ConvLayer {fastai} | R Documentation |
ConvLayer
Description
Create a sequence of convolutional ('ni' to 'nf'), ReLU (if 'use_activ') and 'norm_type' layers.
Usage
ConvLayer(
ni,
nf,
ks = 3,
stride = 1,
padding = NULL,
bias = NULL,
ndim = 2,
norm_type = 1,
bn_1st = TRUE,
act_cls = nn()$ReLU,
transpose = FALSE,
init = "auto",
xtra = NULL,
bias_std = 0.01,
dilation = 1,
groups = 1,
padding_mode = "zeros"
)
Arguments
ni |
number of inputs |
nf |
outputs/ number of features |
ks |
kernel size |
stride |
stride |
padding |
padding |
bias |
bias |
ndim |
dimension number |
norm_type |
normalization type |
bn_1st |
batch normalization 1st |
act_cls |
activation |
transpose |
transpose |
init |
initializer |
xtra |
xtra |
bias_std |
bias standard deviation |
dilation |
specify the dilation rate to use for dilated convolution |
groups |
groups size |
padding_mode |
padding mode, e.g 'zeros' |
Value
None
[Package fastai version 2.2.2 Index]