general_confusion_results {fastLogisticRegressionWrap} | R Documentation |
General Confusion Table and Errors
Description
Provides a confusion table and error metrics for general factor vectors. There is no need for the same levels in the two vectors.
Usage
general_confusion_results(yhat, yfac, proportions_scaled_by_column = FALSE)
Arguments
yhat |
The factor predictions |
yfac |
The true factor responses |
proportions_scaled_by_column |
When returning the proportion table, scale by column? Default is |
Value
A list of raw results
Examples
library(MASS); data(Pima.te)
ybin = as.numeric(Pima.te$type == "Yes")
flr = fast_logistic_regression(
Xmm = model.matrix(~ . - type, Pima.te),
ybin = ybin
)
phat = predict(flr, model.matrix(~ . - type, Pima.te))
yhat = array(NA, length(ybin))
yhat[phat <= 1/3] = "no"
yhat[phat >= 2/3] = "yes"
yhat[is.na(yhat)] = "maybe"
general_confusion_results(factor(yhat, levels = c("no", "yes", "maybe")), factor(ybin))
#you want the "no" to align with 0, the "yes" to align with 1 and the "maybe" to be
#last to align with nothing
[Package fastLogisticRegressionWrap version 1.2.0 Index]