fastJT {fastJT} | R Documentation |
Compute the Jonckheere-Terpstra Test Statistics
Description
A method to compute the Jonckheere-Terpstra test statistics for large numbers of dependent and independent variables, with optional multi-threaded execution. The calculation of the standardized test statistics employs the null variance equation as defined by Hollander and Wolfe (1999, eq. 6.19) to account for ties in the data.
Usage
fastJT(Y, X, outTopN=15L, numThreads=1L, standardized=TRUE)
Arguments
Y |
A matrix of continuous values, representing dependent variables, e.g. marker levels or other observed values. Row names should be sample IDs, and column names should be variable names. Required. |
X |
A matrix of integer values, representing independent variables, e.g. SNP counts or other classification features. Row names should be sample IDs, and column names should be feature IDs. Required. |
outTopN |
An integer to indicate the number of top independent variables to be reported for each dependent variable, based on the standardized Jonckheere-Terpstra test statistics. Optional. The default value is |
numThreads |
A integer to indicate the number of threads used in the computation. Optional. The default value is |
standardized |
A boolean to specify whether to return standardized Jonckheere-Terpstra statistics ( |
Value
A list
with two objects
J |
A matrix of the standardized/non-standardized Jonckheere-Terpstra test statistics,
depending on the value of the |
XIDs |
If |
Note
Rows (samples) are assumed to be in the same order in X
and Y
.
References
Hollander, M. and Wolfe, D. A. (1999) Nonparametric Statistical Methods. New York: Wiley, 2nd edition.
Examples
# Generate dummy data
num_sample <- 100
num_marker <- 10
num_SNP <- 500
set.seed(12345)
Mark <- matrix(rnorm(num_sample*num_marker), num_sample, num_marker)
Geno <- matrix(rbinom(num_sample*num_SNP, 2, 0.5), num_sample, num_SNP)
colnames(Mark) <- paste0("Mrk:",1:num_marker)
colnames(Geno) <- paste0("SNP:",1:num_SNP)
res <- fastJT(Y=Mark, X=Geno, outTopN=5)
res
res <- fastJT(Y=Mark, X=Geno, outTopN=NA)
head(res)