fastGHQuad-package {fastGHQuad} | R Documentation |
A package for fast, numerically-stable computation of Gauss-Hermite quadrature rules
Description
This package provides functions to compute Gauss-Hermite quadrature rules very quickly with a higher degree of numerical stability (tested up to 2000 nodes).
Details
It also provides function for adaptive Gauss-Hermite quadrature, extending Laplace approximations (as in Liu & Pierce 1994).
Package: | fastGHQuad |
Type: | Package |
License: | MIT |
LazyLoad: | yes |
Author(s)
Alexander W Blocker
Maintainer: Alexander W Blocker <ablocker@gmail.com>
References
Golub, G. H. and Welsch, J. H. (1969). Calculation of Gauss Quadrature Rules. Mathematics of Computation 23 (106): 221-230.
Liu, Q. and Pierce, D. A. (1994). A Note on Gauss-Hermite Quadrature. Biometrika, 81(3) 624-629.
See Also
gaussHermiteData
, aghQuad
,
ghQuad
Examples
# Get quadrature rule
rule <- gaussHermiteData(1000)
# Find a normalizing constant
g <- function(x) 1/(1+x^2/10)^(11/2) # t distribution with 10 df
aghQuad(g, 0, 1.1, rule)
# actual is
1/dt(0,10)
# Find an expectation
g <- function(x) x^2*dt(x,10) # t distribution with 10 df
aghQuad(g, 0, 1.1, rule)
# actual is 1.25
[Package fastGHQuad version 1.0.1 Index]