faft {fastAFT} | R Documentation |
Fast censored linear regression for the accelerated failure time (AFT) model
Description
An implementation of the fast censored linear regression in Huang (2013).
Usage
faft(x,dlt,z,weight="logrank",ynci=0,epl=0.95,epu=0.05)
Arguments
x |
follow-up time. |
dlt |
censoring indicator: 1 - event, 0 - censored. |
z |
matrix of covariates: each column corresponds to a covariate. |
weight |
either "logrank" or "Gehan" estimating function. |
ynci |
compute test inversion-based 95% CI's? 1 - yes, 0 - no. |
epl |
parameter in (0,1) for determining the lower quantile from censored quantile regression (Huang 2010) for the preparatory estimation: sum of squared covariates for at-risk uncensored individuals is about $epl^(dim(z)[2]+1)$ in determinant. |
epu |
parameter in (0,1) for determining the upper quantile from censored quantile regression (Huang 2010) for the preparatory estimation: sum of squared covariates for at-risk uncensored individuals is about $epu^(dim(z)[2]+1)$ in determinant. |
Value
weight |
either "logrank" or "Gehan" estimating function. |
beta |
estimated regression coefficient (the proposed). |
va |
sandwich variance estimate for beta. |
qif |
quadratic score statistic at beta. |
ci95 |
test inversion-based 95% CI's, only available if requested and successful. |
message |
point estimation: "success", "error - algorithm fails", or "warning - singular hessian". |
imsg |
numerical code for point and test inversion-based interval estimation: 0 - success in point and interval, 1 - error in point where algorithm fails, 2 - warning in point with singular hessian, 3 - success in point but failure in interval. |
beta1stp |
the one-step estimator. |
qif1stp |
quadratic score statistic at beta1stp. |
betainit |
the initial estimator. |
qifinit |
quadratic score statistic at betainit. |
Author(s)
Yijian Huang
References
Huang, Y. (2010) Quantile calculus and censored regression, The Annals of Statistics 38, 1607–1637.
Huang, Y. (2013) Fast censored linear regression. Scandinavian Journal of Statistics 40, 789–806.
Examples
## simulate a dataset of size 100 with 2 covariates
size <- 100
npred <- 2
beta <- rep(1,npred)
cvt <- matrix(rnorm(size*npred),ncol=npred)
resid <- log(rexp(size))
event.t <- resid + cvt %*% beta
censr.t <- log(runif(size, 0, 6))
x <- pmin(event.t, censr.t)
dlt <- as.numeric(event.t<=censr.t)
## run censored linear regression
fit.g <- faft(x,dlt,cvt,weight="Gehan")
fit.l <- faft(x,dlt,cvt,weight="logrank")