simul.far.wiener {far} | R Documentation |
FAR(1) process simulation with Wiener noise
Description
Simulation of a FAR(1) process using a Wiener noise.
Usage
simul.far.wiener(m=64, n=128,
d.rho=diag(c(0.45, 0.9, 0.34, 0.45)), cst1=0.05, m2=NULL)
Arguments
m |
Integer. Number of discretization points. |
n |
Integer. Number of observations. |
d.rho |
Numerical matrix. Expression of the first bloc of the linear operator in the Karhunen-Loève basis. |
cst1 |
Numeric. Perturbation coefficient on the linear operator. |
m2 |
Integer. Length of the Karhunen-Loève expansion (2 |
Details
This function simulate a FAR(1) process with a Wiener noise. As for
the simul.wiener
, the function use the Karhunen-Loève
expansion of the noise. The FAR(1) process, defined by its linear
operator (see far
for more details), is computed in the
Karhunen-Loève basis then projected in the natural basis. The
parameters given in input (d.rho
and cst1
) are expressed
in the Karhunen-Loève basis.
The linear operator, expressed in the Karhunen-Loève basis, is of the form:
\left(\begin{array}{cc}%
\code{d.rho} & 0 \cr%
0 & eps.rho
\end{array}\right)
Where d.rho
is the matrix provided in ths call, the two 0 are
in fact two blocks of 0, and eps.rho is a diagonal matrix having on
his diagonal the terms:
\left(\varepsilon_{k+1}, \varepsilon_{k+2}, \ldots, %
\varepsilon_{\code{m2}}\right)
where
\varepsilon_{i}=\frac{\code{cst1}}{i^2}+%
\frac{1-\code{cst1}}{e^i}
and k is the length of the d.rho
diagonal.
The d.rho
matrix can be viewed as the information and the
eps.rho matrix as a perturbation. In this logic, the norm of eps.rho
need to be smaller than the one of d.rho
.
Value
A fdata
object containing one variable ("var") which is a
FAR(1) process of length n
with m
discretization
points.
Author(s)
J. Damon
References
Pumo, B. (1992). Estimation et Prévision de Processus Autoregressifs Fonctionnels. Applications aux Processus à Temps Continu. PhD Thesis, University Paris 6, Pierre et Marie Curie.
See Also
fdata
, far
,
simul.far.wiener
.
Examples
far1 <- simul.far.wiener(m=64,n=100)
summary(far1)
print(far(far1,kn=4))
par(mfrow=c(2,1))
plot(far1,date=1)
plot(select.fdata(far1,date=1:5),whole=TRUE,separator=TRUE)