base.simul.far {far} | R Documentation |
Creating functional basis
Description
Computation of a particular basis in a functional space.
Usage
base.simul.far(m=24, n=5)
Arguments
m |
Number of discretization points |
n |
Number of axis |
Details
We consider a sinusoidal basis of the functional space C[0;1] of the
continuous functions from [0;1] to R. We compute here the values of
the n
first (functional) axis at m
equi-repartited
discretization points in [0;1] (more precisely the point
0,\frac{1}{\code{m}}
,...,
\frac{\code{m}-1}{\code{m}}
).
Value
A matrix of size m
x n
containing the m
values of
the n
first axis of the basis.
Note
The chosen basis is orthogonal.
The aim of this function is to provide an internal tool for the
function simul.farx
.
Author(s)
J. Damon
See Also
Examples
print(temp<-base.simul.far(10,3))
print(t(temp)%*%temp)
matplot(base.simul.far(100,5),type='l')
[Package far version 0.6-6 Index]