| base.simul.far {far} | R Documentation |
Creating functional basis
Description
Computation of a particular basis in a functional space.
Usage
base.simul.far(m=24, n=5)
Arguments
m |
Number of discretization points |
n |
Number of axis |
Details
We consider a sinusoidal basis of the functional space C[0;1] of the
continuous functions from [0;1] to R. We compute here the values of
the n first (functional) axis at m equi-repartited
discretization points in [0;1] (more precisely the point
0,\frac{1}{\code{m}},...,
\frac{\code{m}-1}{\code{m}}).
Value
A matrix of size m x n containing the m values of
the n first axis of the basis.
Note
The chosen basis is orthogonal.
The aim of this function is to provide an internal tool for the
function simul.farx.
Author(s)
J. Damon
See Also
Examples
print(temp<-base.simul.far(10,3))
print(t(temp)%*%temp)
matplot(base.simul.far(100,5),type='l')
[Package far version 0.6-6 Index]