robustMD {faoutlier} | R Documentation |
Robust Mahalanobis
Description
Obtain Mahalanobis distances using the robust
computing methods found in the MASS
package. This function is generally only applicable
to models with continuous variables.
Usage
robustMD(data, method = "mve", ...)
## S3 method for class 'robmah'
print(x, ncases = 10, digits = 5, ...)
## S3 method for class 'robmah'
plot(x, y = NULL, type = "xyplot", main, ...)
Arguments
data |
matrix or data.frame |
method |
type of estimation for robust means and covariance
(see |
... |
additional arguments to pass to |
x |
an object of class |
ncases |
number of extreme cases to print |
digits |
number of digits to round in the final result |
y |
empty parameter passed to |
type |
type of plot to display, can be either |
main |
title for plot. If missing titles will be generated automatically |
Author(s)
Phil Chalmers rphilip.chalmers@gmail.com
References
Chalmers, R. P. & Flora, D. B. (2015). faoutlier: An R Package for Detecting Influential Cases in Exploratory and Confirmatory Factor Analysis. Applied Psychological Measurement, 39, 573-574. doi: 10.1177/0146621615597894
Flora, D. B., LaBrish, C. & Chalmers, R. P. (2012). Old and new ideas for data screening and assumption testing for exploratory and confirmatory factor analysis. Frontiers in Psychology, 3, 1-21. doi: 10.3389/fpsyg.2012.00055
See Also
Examples
## Not run:
data(holzinger)
output <- robustMD(holzinger)
output
plot(output)
plot(output, type = 'qqplot')
## End(Not run)