faoutlier {faoutlier}R Documentation

Influential case detection methods for FA and SEM

Description

Influential case detection methods for factor analysis and SEM

Details

Implements robust Mahalanobis methods, generalized Cook's distances, likelihood ratio tests, model implied residuals, and various graphical methods to help detect and summarize influential cases that can affect exploratory and confirmatory factor analyses.

Author(s)

Phil Chalmers rphilip.chalmers@gmail.com

References

Chalmers, R. P. & Flora, D. B. (2015). faoutlier: An R Package for Detecting Influential Cases in Exploratory and Confirmatory Factor Analysis. Applied Psychological Measurement, 39, 573-574. doi: 10.1177/0146621615597894

Flora, D. B., LaBrish, C. & Chalmers, R. P. (2012). Old and new ideas for data screening and assumption testing for exploratory and confirmatory factor analysis. Frontiers in Psychology, 3, 1-21. doi: 10.3389/fpsyg.2012.00055


[Package faoutlier version 0.7.6 Index]