estimateGraph {fanovaGraph} | R Documentation |
FANOVA graph estimation.
Description
Estimates the structure of the FANOVA graph by estimating the total interaction indices for the graph edges (a particular case of superset importance introduced by Liu and Owen, 2006), the main effect indices for the graph vertices and the overall variance for normalizing the indices and finding the clique structure of the estimated graph.
Usage
estimateGraph(f.mat, d, q = NULL, q.arg = NULL, n.tot = NULL, method = "LiuOwen",
n.lo = NULL, n.mc = NULL, n.fast = 500, L = NULL, M = 6, n.pf = NULL, n.main = 1000,
confint = TRUE, print.loop.index = FALSE, ...)
Arguments
f.mat |
vectorized function for which the FANOVA graph shall be estimated |
d |
integer, number of input factors (vertices) |
q |
a vector of character strings of quantile functions corresponding to the factors distributions, it can be a single character string meaning same distribution for all, if not specified |
q.arg |
a list of lists of quantile functions parameters of the distributions in |
n.tot |
optional integer, total number of function evaluations, instead of |
method |
character string specifying the estimation method of the total interaction indices, to be chosen between |
n.lo |
optional integer, only if |
n.mc |
optional integer, only if |
n.fast |
optional integer, only if |
L |
optional integer, only if |
M |
optional integer, only if |
n.pf |
optional integer, only if |
n.main |
integer, number of Monte Carlo Simulations for computing main effect indices |
confint |
optional Boolean, if |
print.loop.index |
optional Boolean, if |
... |
additional arguments to be passed to the function |
Value
an object of class graphlist
containing the graph structure which includes
d |
number of input factors |
tii |
matrix containing the unscaled total interaction indices and if |
i1 |
matrix containing the unscaled main effect indices |
V |
overall variance |
tii.scaled |
matrix containing the scaled total interaction indices |
cliques |
list of cliques |
Author(s)
J. Fruth, T. Muehlenstaedt
References
Fruth, J.; Roustant, O.; Kuhnt, S. (2013+) Total interaction index: A variance-based sensitivity index for second-order interaction screening.
Janon, A.; Klein, T.; Lagnoux, A.; Nodet, M.; Prieur, C. (2013) Asymptotic normality and efficiency of two Sobol index estimators.
Liu, R.; Owen, A.B. (2006) Estimating mean dimensionality of analysis of variance decompositions, Journal of the American Statistical Association, 101 474, 712-721.
Mara, T.A (2009) Extension of the RBD-FAST method to the computation of global sensitivity indices, Reliability Engineering & System Safety, 94 no. 8, 1274-1281.
Muehlenstaedt, T.; Roustant, O.; Carraro, L.; Kuhnt, S. (2011) Data-driven Kriging models based on FANOVA-decomposition, Statistics and Computing.
Sobol', I. M. (1993) Sensitivity estimates for nonlinear mathematical models, Mathematical Modeling and Computational Experiment, 1, 407-414.
Examples
# Ishigami function, true analytical values: D12 = D23 = 0, D13 =~ 3.374
q.arg = list(list(min=-pi, max=pi), list(min=-pi, max=pi), list(min=-pi, max=pi))
estimateGraph(f.mat=ishigami.fun, d=3, q.arg=q.arg, n.tot=10000, method="LiuOwen")
estimateGraph(f.mat=ishigami.fun, d=3, q.arg=q.arg, n.tot=10000, method="FixFast")
estimateGraph(f.mat=ishigami.fun, d=3, q.arg=q.arg, n.tot=10000, method="RBD")
estimateGraph(f.mat=ishigami.fun, d=3, q.arg=q.arg, n.tot=10000, method="PickFreeze")