fakmct {fakmct} | R Documentation |
Fuzzy Adaptive Resonance Theory (ART) K-Means Clustering Technique
Description
Clustering data observation with hybrid method Fuzzy ART and K-Means
Usage
fakmct(
input,
rho,
alpha,
beta,
w_init = NA,
max_epochs = 1000,
max_clusters = 1000,
eps = 10^-6
)
Arguments
input |
The input (vector) data observation. Should be numeric type of data. |
rho |
Vigilance parameter in (0,1) |
alpha |
Choice parameter alpha > 0 |
beta |
Learning rate in (0,1) |
w_init |
Initial weight |
max_epochs |
Maximum number of iterations |
max_clusters |
Maximum number of clusters that allowed |
eps |
Tolerance with default is 10^-6 |
Value
labels |
clusters label of each observations |
size |
the size of each clusters that have been formed |
clusters |
a list of observations in each clusters |
centroids |
cluster centroids that are calculated by the mean value of the objects in each clusters |
weights |
the model weight |
params |
parameters that have been saved in the function |
num_clusters |
number of cluster that have been formed |
running.time |
time for running function |
Examples
library(fakmct)
# Using dataset iris
## load data
data.inputs = iris[,-5]
true.labels = as.numeric(unlist(iris$Species))
## run model data
ex.iris<-fakmct(data.inputs, alpha = 0.3, rho = 0.5, beta = 1, max_epochs = 50, max_clusters = 5)
ex.iris$labels
ex.iris$size
ex.iris$centroids
ex.iris$params
## plot data
plot(data.inputs, col = ex.iris$labels, pch = true.labels,
main = paste0("Dataset: Iris"))
# Using data IPM 2019
## load simulate data IPM
data("simulatedataIPM")
dt <- simulatedataIPM
## run model data IPM
mod.fakm<-fakmct(dt, alpha = 0.3, rho = 0.5, beta = 0.1, max_epochs = 50, max_clusters = 5)
mod.fakm$labels
mod.fakm$size
mod.fakm$centroids
mod.fakm$params
## plot data IPM
plot(dt, col = mod.fakm$labels, pch=mod.fakm$labels, main = paste0("Dataset IPM"))
[Package fakmct version 0.1.0 Index]