resample {fairmodels} | R Documentation |
Resample
Description
Method of bias mitigation. Similarly to reweight
this method computes desired number of observations if the protected variable is independent
from y and on this basis decides if this subgroup with certain class (+ or -) should be more or less numerous. Than performs oversampling or undersampling depending on the case.
If type of sampling is set to 'preferential' and probs are provided than instead of uniform sampling preferential sampling will be performed. Preferential sampling depending on the case
will sample observations close to border or far from border.
Usage
resample(protected, y, type = "uniform", probs = NULL, cutoff = 0.5)
Arguments
protected |
factor, protected variables with subgroups as levels (sensitive attributes) |
y |
numeric, vector with classes 0 and 1, where 1 means favorable class. |
type |
character, either (default) 'uniform' or 'preferential' |
probs |
numeric, vector with probabilities for preferential sampling |
cutoff |
numeric, threshold for probabilities |
Value
numeric vector of indexes
References
This method was implemented based on Kamiran, Calders 2011 https://link.springer.com/content/pdf/10.1007/s10115-011-0463-8.pdf
Examples
data("german")
data <- german
data$Age <- as.factor(ifelse(data$Age <= 25, "young", "old"))
y_numeric <- as.numeric(data$Risk) - 1
rf <- ranger::ranger(Risk ~ .,
data = data,
probability = TRUE,
num.trees = 50,
num.threads = 1,
seed = 123
)
u_indexes <- resample(data$Age, y = y_numeric)
rf_u <- ranger::ranger(Risk ~ .,
data = data[u_indexes, ],
probability = TRUE,
num.trees = 50,
num.threads = 1,
seed = 123
)
explainer_rf <- DALEX::explain(rf,
data = data[, -1],
y = y_numeric,
label = "not_sampled"
)
explainer_rf_u <- DALEX::explain(rf_u, data = data[, -1], y = y_numeric, label = "sampled_uniform")
fobject <- fairness_check(explainer_rf, explainer_rf_u,
protected = data$Age,
privileged = "old"
)
fobject
plot(fobject)
p_indexes <- resample(data$Age, y = y_numeric, type = "preferential", probs = explainer_rf$y_hat)
rf_p <- ranger::ranger(Risk ~ .,
data = data[p_indexes, ],
probability = TRUE,
num.trees = 50,
num.threads = 1,
seed = 123
)
explainer_rf_p <- DALEX::explain(rf_p,
data = data[, -1], y = y_numeric,
label = "sampled_preferential"
)
fobject <- fairness_check(explainer_rf, explainer_rf_u, explainer_rf_p,
protected = data$Age,
privileged = "old"
)
fobject
plot(fobject)