print.stacked_metrics {fairmodels} | R Documentation |
Print stacked metrics
Description
Stack metrics sums parity loss metrics for all models. Higher value of stacked metrics means the model is less fair (has higher bias) for subgroups from protected vector.
Usage
## S3 method for class 'stacked_metrics'
print(x, ...)
Arguments
x |
|
... |
other print parameters |
Examples
data("german")
y_numeric <- as.numeric(german$Risk) - 1
lm_model <- glm(Risk ~ .,
data = german,
family = binomial(link = "logit")
)
rf_model <- ranger::ranger(Risk ~ .,
data = german,
probability = TRUE,
num.trees = 200,
num.threads = 1
)
explainer_lm <- DALEX::explain(lm_model, data = german[, -1], y = y_numeric)
explainer_rf <- DALEX::explain(rf_model, data = german[, -1], y = y_numeric)
fobject <- fairness_check(explainer_lm, explainer_rf,
protected = german$Sex,
privileged = "male"
)
sm <- stack_metrics(fobject)
print(sm)
[Package fairmodels version 1.2.1 Index]