pre_process_data {fairmodels} | R Documentation |
Pre-process data
Description
Function aggregates all pre-processing algorithms for bias mitigation. User passes unified arguments and specifies type to receive transformed data.frame
Usage
pre_process_data(data, protected, y, type = "resample_uniform", ...)
Arguments
data |
|
protected |
factor, protected attribute (sensitive variable) containing information about gender, race etc... |
y |
numeric, numeric values of predicted variable. 1 should denote favorable outcome. |
type |
character, type of pre-processing algorithm to be used, one of:
|
... |
other parameters passed to pre-processing algorithms |
Value
modified data (data.frame
). In case of type = 'reweight' data has feature '_weights_' containing weights that need to be passed to model.
In other cases data is ready to be passed as training data to a model.
Examples
data("german")
pre_process_data(german,
german$Sex,
as.numeric(german$Risk) - 1,
type = "disparate_impact_remover",
features_to_transform = "Age"
)
[Package fairmodels version 1.2.1 Index]