stack_metrics {fairmodels} | R Documentation |
Stack metrics
Description
Stack metrics sums parity loss metrics for all models. Higher value of stacked metrics means the model is less fair (has higher bias) for subgroups from protected vector.
Usage
stack_metrics(x, fairness_metrics = c("ACC", "TPR", "PPV", "FPR", "STP"))
Arguments
x |
object of class |
fairness_metrics |
character, vector of fairness parity_loss metric names to include in plot. Full names are provided in |
Value
stacked_metrics
object. It contains data.frame
with information about score for each metric and model.
Examples
data("german")
y_numeric <- as.numeric(german$Risk) - 1
lm_model <- glm(Risk ~ .,
data = german,
family = binomial(link = "logit")
)
explainer_lm <- DALEX::explain(lm_model, data = german[, -1], y = y_numeric)
fobject <- fairness_check(explainer_lm,
protected = german$Sex,
privileged = "male"
)
sm <- stack_metrics(fobject)
plot(sm)
rf_model <- ranger::ranger(Risk ~ .,
data = german,
probability = TRUE,
num.trees = 200
)
explainer_rf <- DALEX::explain(rf_model, data = german[, -1], y = y_numeric)
fobject <- fairness_check(explainer_rf, fobject)
sm <- stack_metrics(fobject)
plot(sm)
[Package fairmodels version 1.2.1 Index]