plot.ceteris_paribus_cutoff {fairmodels} | R Documentation |
Ceteris paribus cutoff plot
Description
Ceteris paribus cutoff is way to check how will parity loss behave if we changed only cutoff in one subgroup. It plots object of class ceteris_paribus_cutoff. It might have two types - default and cumulated. Cumulated sums metrics and plots it all in one plot. When default one is used all chosen metrics will be plotted for each model.
Usage
## S3 method for class 'ceteris_paribus_cutoff'
plot(x, ...)
Arguments
x |
ceteris_paribus_cutoff object |
... |
other plot parameters |
Value
ggplot2
object
Examples
data("compas")
# positive outcome - not being recidivist
two_yr_recidivism <- factor(compas$Two_yr_Recidivism, levels = c(1, 0))
y_numeric <- as.numeric(two_yr_recidivism) - 1
compas$Two_yr_Recidivism <- two_yr_recidivism
lm_model <- glm(Two_yr_Recidivism ~ .,
data = compas,
family = binomial(link = "logit")
)
explainer_lm <- DALEX::explain(lm_model, data = compas[, -1], y = y_numeric)
fobject <- fairness_check(explainer_lm,
protected = compas$Ethnicity,
privileged = "Caucasian"
)
cpc <- ceteris_paribus_cutoff(fobject, "African_American")
plot(cpc)
rf_model <- ranger::ranger(Two_yr_Recidivism ~ .,
data = compas,
probability = TRUE,
num.trees = 200
)
explainer_rf <- DALEX::explain(rf_model, data = compas[, -1], y = y_numeric)
fobject <- fairness_check(explainer_lm, explainer_rf,
protected = compas$Ethnicity,
privileged = "Caucasian"
)
cpc <- ceteris_paribus_cutoff(fobject, "African_American")
plot(cpc)
[Package fairmodels version 1.2.1 Index]