metric_scores {fairmodels} | R Documentation |
Metric scores
Description
Creates metric_scores
object to facilitate visualization. Check how the metric scores differ among models, what is this score, and how it changes
for example after applying bias mitigation technique. The vertical black lines
denote the scores for privileged subgroup. It is best to use only few metrics (using fairness_metrics
parameter)
Usage
metric_scores(x, fairness_metrics = c("ACC", "TPR", "PPV", "FPR", "STP"))
Arguments
x |
object of class |
fairness_metrics |
character, vector with fairness metric names. Default metrics are ones in |
Value
metric_scores
object.
It is a list containing:
metric_scores_data -
data.frame
with information about score in particular subgroup, metric, and modelprivileged - name of privileged subgroup
Examples
data("german")
y_numeric <- as.numeric(german$Risk) - 1
lm_model <- glm(Risk ~ .,
data = german,
family = binomial(link = "logit")
)
explainer_lm <- DALEX::explain(lm_model, data = german[, -1], y = y_numeric)
fobject <- fairness_check(explainer_lm,
protected = german$Sex,
privileged = "male"
)
ms <- metric_scores(fobject, fairness_metrics = c("ACC", "TPR", "PPV", "FPR", "STP"))
plot(ms)
rf_model <- ranger::ranger(Risk ~ .,
data = german,
probability = TRUE,
num.trees = 200
)
explainer_rf <- DALEX::explain(rf_model, data = german[, -1], y = y_numeric)
fobject <- fairness_check(explainer_rf, fobject)
ms <- metric_scores(fobject, fairness_metrics = c("ACC", "TPR", "PPV", "FPR", "STP"))
plot(ms)
[Package fairmodels version 1.2.1 Index]