fairness_heatmap {fairmodels} | R Documentation |
Fairness heatmap
Description
Create fairness_heatmap
object to compare both models and metrics.
If parameter scale
is set to TRUE
metrics will be scaled to median = 0 and sd = 1.
If NA's appear heatmap will still plot, but with gray area where NA's were.
Usage
fairness_heatmap(x, scale = FALSE)
Arguments
x |
object of class |
scale |
logical, if codeTRUE metrics will be scaled to mean 0 and sd 1. Default |
Value
fairness_heatmap
object.
It is a list with following fields:
heatmap_data -
data.frame
with information about score for model and parity loss metricmatrix_model - matrix used in dendogram plots
scale - logical parameter passed to
fairness_heatmap
label - character, vector of model labels
Examples
data("german")
y_numeric <- as.numeric(german$Risk) - 1
lm_model <- glm(Risk ~ .,
data = german,
family = binomial(link = "logit")
)
rf_model <- ranger::ranger(Risk ~ .,
data = german,
probability = TRUE,
num.trees = 200,
num.threads = 1
)
explainer_lm <- DALEX::explain(lm_model, data = german[, -1], y = y_numeric)
explainer_rf <- DALEX::explain(rf_model, data = german[, -1], y = y_numeric)
fobject <- fairness_check(explainer_lm, explainer_rf,
protected = german$Sex,
privileged = "male"
)
# same explainers with different cutoffs for female
fobject <- fairness_check(explainer_lm, explainer_rf, fobject,
protected = german$Sex,
privileged = "male",
cutoff = list(female = 0.4),
label = c("lm_2", "rf_2")
)
fh <- fairness_heatmap(fobject)
plot(fh)
[Package fairmodels version 1.2.1 Index]