eigenvalue {factoextra}R Documentation

Extract and visualize the eigenvalues/variances of dimensions

Description

Eigenvalues correspond to the amount of the variation explained by each principal component (PC).

These functions support the results of Principal Component Analysis (PCA), Correspondence Analysis (CA), Multiple Correspondence Analysis (MCA), Factor Analysis of Mixed Data (FAMD), Multiple Factor Analysis (MFA) and Hierarchical Multiple Factor Analysis (HMFA) functions.

Usage

get_eig(X)

get_eigenvalue(X)

fviz_eig(
  X,
  choice = c("variance", "eigenvalue"),
  geom = c("bar", "line"),
  barfill = "steelblue",
  barcolor = "steelblue",
  linecolor = "black",
  ncp = 10,
  addlabels = FALSE,
  hjust = 0,
  main = NULL,
  xlab = NULL,
  ylab = NULL,
  ggtheme = theme_minimal(),
  ...
)

fviz_screeplot(...)

Arguments

X

an object of class PCA, CA, MCA, FAMD, MFA and HMFA [FactoMineR]; prcomp and princomp [stats]; dudi, pca, coa and acm [ade4]; ca and mjca [ca package].

choice

a text specifying the data to be plotted. Allowed values are "variance" or "eigenvalue".

geom

a text specifying the geometry to be used for the graph. Allowed values are "bar" for barplot, "line" for lineplot or c("bar", "line") to use both types.

barfill

fill color for bar plot.

barcolor

outline color for bar plot.

linecolor

color for line plot (when geom contains "line").

ncp

a numeric value specifying the number of dimensions to be shown.

addlabels

logical value. If TRUE, labels are added at the top of bars or points showing the information retained by each dimension.

hjust

horizontal adjustment of the labels.

main, xlab, ylab

plot main and axis titles.

ggtheme

function, ggplot2 theme name. Default value is theme_pubr(). Allowed values include ggplot2 official themes: theme_gray(), theme_bw(), theme_minimal(), theme_classic(), theme_void(), ....

...

optional arguments to be passed to the function ggpar.

Value

Author(s)

Alboukadel Kassambara alboukadel.kassambara@gmail.com

References

http://www.sthda.com/english/

See Also

fviz_pca, fviz_ca, fviz_mca, fviz_mfa, fviz_hmfa

Examples

# Principal Component Analysis
# ++++++++++++++++++++++++++
data(iris)
res.pca <- prcomp(iris[, -5],  scale = TRUE)

# Extract eigenvalues/variances
get_eig(res.pca)

# Default plot
fviz_eig(res.pca, addlabels = TRUE, ylim = c(0, 85))
  
# Scree plot - Eigenvalues
fviz_eig(res.pca, choice = "eigenvalue", addlabels=TRUE)

# Use only bar  or line plot: geom = "bar" or geom = "line"
fviz_eig(res.pca, geom="line")
 
## Not run:          
# Correspondence Analysis
# +++++++++++++++++++++++++++++++++
library(FactoMineR)
data(housetasks)
res.ca <- CA(housetasks, graph = FALSE)
get_eig(res.ca)
fviz_eig(res.ca, linecolor = "#FC4E07",
   barcolor = "#00AFBB", barfill = "#00AFBB")

# Multiple Correspondence Analysis
# +++++++++++++++++++++++++++++++++
library(FactoMineR)
data(poison)
res.mca <- MCA(poison, quanti.sup = 1:2, 
              quali.sup = 3:4, graph=FALSE)
get_eig(res.mca)
fviz_eig(res.mca, linecolor = "#FC4E07",
   barcolor = "#2E9FDF", barfill = "#2E9FDF")

## End(Not run)


[Package factoextra version 1.0.7 Index]