| fmRsq {facmodCS} | R Documentation |
Factor Model R-Squared and Adj R-Squared Values
Description
Calcluate and plot the Factor Model R-Squared, Adjusted R-Squared for a portfolio of assets
Usage
fmRsq(
ffmObj,
rsq = TRUE,
rsqAdj = FALSE,
plt.type = 2,
digits = 2,
isPrint = TRUE,
isPlot = TRUE,
lwd = 2,
stripText.cex = 1,
axis.cex = 1,
title = TRUE,
...
)
Arguments
ffmObj |
an object of class |
rsq |
logical; if |
rsqAdj |
logical; if |
plt.type |
a number to indicate the type of plot for plotting Factor Model R-squared/Adj. R-squared values. 1 indicates barplot, 2 indicates time series xy plot. Default is 2. |
digits |
an integer indicating the number of decimal places to be used for rounding. Default is 2. |
isPrint |
logical. if |
isPlot |
logical. if |
lwd |
line width relative to the default. Default is 2. |
stripText.cex |
a number indicating the amount by which strip text in the plot(s) should be scaled relative to the default. 1=default, 1.5 is 50% larger, 0.5 is 50% smaller, etc. |
axis.cex |
a number indicating the amount by which axis in the plot(s) should be scaled relative to the default. 1=default, 1.5 is 50% larger, 0.5 is 50% smaller, etc. |
title |
logical. if |
... |
potentially further arguments passed. |
Value
fmRsq returns the sample mean values and plots the time series of corresponding R squared values
and the Variance Inflation factors depending on the values of rsq, rsqAdj and VIF.
The time series of the output values are also printed if isPrint is TRUE
Author(s)
Avinash Acharya and Doug Martin
Examples
#Load the data
# Fundamental Factor Model
library(PCRA)
dateRange <- c("2006-01-31","2010-12-31")
stockItems <- c("Date", "TickerLast", "Return","Sector")
factorItems <- c("BP","Beta60M","PM12M1M")
facDatIT <- selectCRSPandSPGMI("monthly",
dateRange = dateRange,
stockItems = stockItems,
factorItems = factorItems,
outputType = "data.table")
asset.var="TickerLast"
ret.var="Return"
date.var = "Date"
exposure.vars= factorItems
asset.var="TickerLast"
ret.var="Return"
date.var = "Date"
spec1 <- specFfm(data = facDatIT,asset.var = asset.var, ret.var = ret.var,
date.var = date.var, exposure.vars = exposure.vars,weight.var = NULL,
addIntercept = TRUE, rob.stats = FALSE)
# fit a fundamental factor model
mdlFit <- fitFfmDT(spec1)
mdlRes <- extractRegressionStats(spec1,mdlFit)
fit.cross <- convert(SpecObj = spec1,FitObj = mdlFit, RegStatsObj = mdlRes)
#Calculate and plot the portfolio R-squared values
fmRsq(fit.cross)
#Plot and print the time series of Adj R-squared and VIF values
fmRsq(fit.cross, rsqAdj=TRUE, isPrint=TRUE, plt.type = 2)