overfittingMFA_Sj_missing_values {fabMix} | R Documentation |
Basic MCMC sampler for the case of missing data and different error variance
Description
Gibbs sampling for fitting a mixture model of factor analyzers.
Usage
overfittingMFA_Sj_missing_values(missing_entries, x_data, originalX,
outputDirectory, Kmax,
m, thinning, burn, g, h, alpha_prior, alpha_sigma,
beta_sigma, start_values, q, zStart, gibbs_z, lowerTriangular)
Arguments
missing_entries |
list which contains the row number (1st entry) and column indexes (subsequent entries) for every row containing missing values. |
x_data |
normalized data |
originalX |
observed raw data (only for plotting purpose) |
outputDirectory |
Name of the output folder |
Kmax |
Number of mixture components |
m |
Number of iterations |
thinning |
Thinning of chain |
burn |
Burn-in period |
g |
Prior parameter |
h |
Prior parameter |
alpha_prior |
Parameters of the Dirichlet prior distribution of mixture weights. |
alpha_sigma |
Prior parameter |
beta_sigma |
Prior parameter |
start_values |
Optional (not used) |
q |
Number of factors. |
zStart |
Optional (not used) |
gibbs_z |
Optional |
lowerTriangular |
logical value indicating whether a lower triangular parameterization should be imposed on the matrix of factor loadings (if TRUE) or not. Default: TRUE. |
Value
List of files
Author(s)
Panagiotis Papastamoulis