overfittingMFA_CUC {fabMix} | R Documentation |
Basic MCMC sampler for the CUC
model
Description
Gibbs sampling for fitting a CUC mixture model of factor analyzers.
Usage
overfittingMFA_CUC(x_data, originalX, outputDirectory, Kmax, m, thinning, burn,
g, h, alpha_prior, alpha_sigma, beta_sigma,
start_values, q, zStart, gibbs_z, lowerTriangular)
Arguments
x_data |
normalized data |
originalX |
observed raw data (only for plotting purpose) |
outputDirectory |
Name of the output folder |
Kmax |
Number of mixture components |
m |
Number of iterations |
thinning |
Thinning of chain |
burn |
Burn-in period |
g |
Prior parameter |
h |
Prior parameter |
alpha_prior |
Parameters of the Dirichlet prior distribution of mixture weights. |
alpha_sigma |
Prior parameter |
beta_sigma |
Prior parameter |
start_values |
Optional (not used) |
q |
Number of factors. |
zStart |
Optional (not used) |
gibbs_z |
Optional |
lowerTriangular |
logical value indicating whether a lower triangular parameterization should be imposed on the matrix of factor loadings (if TRUE) or not. Default: TRUE. |
Value
Set of files written in outputDirectory
.
Author(s)
Panagiotis Papastamoulis
Examples
library('fabMix')
n = 8 # sample size
p = 5 # number of variables
q = 2 # number of factors
K = 2 # true number of clusters
sINV_diag = 1/((1:p)) # diagonal of inverse variance of errors
set.seed(100)
syntheticDataset <- simData(sameLambda=TRUE,K.true = K, n = n, q = q, p = p,
sINV_values = sINV_diag)
colnames(syntheticDataset$data) <- paste0("x_",1:p)
Kmax <- 4 # number of components for the overfitted mixture model
set.seed(1)
overfittingMFA_CUC(x_data = syntheticDataset$data,
originalX = syntheticDataset$data, outputDirectory = 'outDir',
Kmax = Kmax, m = 5, burn = 1,
g = 0.5, h = 0.5, alpha_prior = rep(1, Kmax),
alpha_sigma = 0.5, beta_sigma = 0.5,
start_values = FALSE, q = 2, gibbs_z = 1)
list.files('outDir')
unlink('outDir', recursive = TRUE)