Sum_of_Wishart_df {fPASS}R Documentation

The approximate degrees of freedom formula for sum of Wishart.

Description

[Stable]

The approximate degrees of freedom formula for sum of two independent Wishart random variable with parameter sig1 and sig2, and degrees of freedom n1-1 and n2-1 where n1 + n2 is equal to the total_sample_size.

See Koner and Luo (2023) for more details on the formula for degrees of freedom.

Usage

Sum_of_Wishart_df(total_sample_size, alloc.ratio, sig1, sig2)

Arguments

total_sample_size

Target sample size, must be a positive integer.

alloc.ratio

Allocation of total sample size into the two groups. Must set as a vector of two positive numbers. For equal allocation it should be put as c(1,1), for non-equal allocation one can put c(2,1) or c(3,1) etc.

sig1

The true (or estimate) of covariance matrix for the first group. Must be symmetric (is.symmetric(sig1) == TRUE) and positive definite (chol(sig1) without an error!).

sig2

The true (or estimate) of covariance matrix for the second group. Must be symmetric (is.symmetric(sig2) == TRUE) and positive definite (chol(sig2) without an error!).

Value

The approximate degrees of freedom.

Author(s)

Salil Koner
Maintainer: Salil Koner salil.koner@duke.edu

See Also

Sim_HotellingT_unequal_var() and pHotellingT().

Examples


k <- 8
mu1  <- rep(0,k); del  <- 0.4; mu2 <- mu1 + rep(del, k);
sig1 <- diag(k); sig2 <- sig1 + del*toeplitz(c(1,rep(0.5, k-1)))
alt.dist.samples <- Sum_of_Wishart_df(total_sample_size=150,
sig1=sig1, sig2=sig2, alloc.ratio=c(2,1))


[Package fPASS version 1.0.0 Index]