zzz-mvt {fMultivar} | R Documentation |
Multivariate Student-t Distribution
Description
Alternative density, distribution function, and random generation for the multivariate Student-t distribution.
Details
The functions to compute densities dmvt
, probabilities
pmvt
, and to generate random numbers rmvt
are
available from the contributed R package mvtnorm
.
The function qmvt
computes the equicoordinate quantile
function of the multivariate normal distribution for arbitrary
correlation matrices based on inversion of pmvt
.
dmvt(x, delta, sigma, df, <<...>>)
pmvt(<<...>>)
rmvt(n, sigma, df, delta, <<...>>
NOTE: The function are not builtin in the package fMultivar
.
Fur details we refer to the help page of mvnorm
.
Author(s)
Alan Genz, Frank Bretz, Tetsuhisa Miwa, Xuefei Mi, Friedrich Leisch, Fabian Scheipl, Bjoern Bornkamp, Torsten Hothorn.
References
McNeil, A. J., Frey, R., and Embrechts, P. (2005), Quantitative Risk Management: Concepts, Techniques, Tools, Princeton University Press.
Examples
## Not run:
## Load Libray:
require(mvtnorm)
## dmvt -
# basic evaluation
dmvt(x = c(0,0), sigma = diag(2))
## dmvt | dmvnorm -
# check behavior for df=0 and df=Inf
x <- c(1.23, 4.56)
mu <- 1:2
Sigma <- diag(2)
x0 <- dmvt(x, delta = mu, sigma = Sigma, df = 0) # default log = TRUE!
x8 <- dmvt(x, delta = mu, sigma = Sigma, df = Inf) # default log = TRUE!
xn <- dmvnorm(x, mean = mu, sigma = Sigma, log = TRUE)
stopifnot(identical(x0, x8), identical(x0, xn))
## rmvt -
# X ~ t_3(0, diag(2))
x <- rmvt(100, sigma = diag(2), df = 3) # t_3(0, diag(2)) sample
plot(x)
## rmvt -
# X ~ t_3(mu, Sigma)
n <- 1000
mu <- 1:2
Sigma <- matrix(c(4, 2, 2, 3), ncol=2)
set.seed(271)
x <- rep(mu, each=n) + rmvt(n, sigma=Sigma, df=3)
plot(x)
## rmvt -
# Note that the call rmvt(n, mean=mu, sigma=Sigma, df=3) does *not*
# give a valid sample from t_3(mu, Sigma)! [and thus throws an error]
try(rmvt(n, mean=mu, sigma=Sigma, df=3))
## rmvnorm -
# df=Inf correctly samples from a multivariate normal distribution
set.seed(271)
x <- rep(mu, each=n) + rmvt(n, sigma=Sigma, df=Inf)
set.seed(271)
x. <- rmvnorm(n, mean=mu, sigma=Sigma)
stopifnot(identical(x, x.))
## End(Not run)