dax_vw_model {fHMM} | R Documentation |
DAX/VW hierarchical HMM with t-distributions
Description
A pre-computed HHMM with monthly averaged closing prices of the DAX from 2010 to 2022 on the coarse scale, Volkswagen AG stock data on the fine scale, two hidden fine-scale and coarse-scale states, respectively, and state-dependent t-distributions for demonstration purpose.
Usage
data("dax_vw_model")
Format
An object of class fHMM_model
.
Details
The model was estimated via:
controls <- set_controls( hierarchy = TRUE, states = c(2, 2), sdds = c("t", "t"), period = "m", data = list( file = list(dax, vw), from = "2010-01-01", to = "2022-12-31", logreturns = c(TRUE, TRUE) ), fit = list( runs = 200, iterlim = 300, gradtol = 1e-6, steptol = 1e-6 ) ) dax_vw_data <- prepare_data(controls) dax_vw_model <- fit_model(dax_vw_data, seed = 1, ncluster = 10) dax_vw_model <- decode_states(dax_vw_model) dax_vw_model <- compute_residuals(dax_vw_model) summary(dax_vw_model)
[Package fHMM version 1.3.1 Index]