EllipticalDependency {fCopulae} | R Documentation |
Bivariate Elliptical Copulae
Description
A collection and description of functions to investigate
bivariate elliptical copulae.
Elliptical Copulae Functions:
ellipticalTau | Computes Kendall's tau for elliptical copulae, |
ellipticalRho | computes Spearman's rho for elliptical copulae, |
ellipticalTailCoeff | computes tail dependence for elliptical copulae, |
ellipticalTailPlot | plots tail dependence for elliptical copulae. |
Usage
ellipticalTau(rho)
ellipticalRho(rho, param = NULL, type = ellipticalList(), subdivisions = 500)
ellipticalTailCoeff(rho, param = NULL, type = c("norm", "cauchy", "t"))
ellipticalTailPlot(param = NULL, type = c("norm", "cauchy", "t"),
tail = c("Lower", "Upper"))
Arguments
rho |
[*ellipticalCopula] - |
param |
[*ellipticalCopula][gfunc] - |
subdivisions |
[ellipticalRho] - |
tail |
[ellipticalTailPlot] - |
type |
[*ellipticalCopula][gfunc] - |
Value
Copula Functions:
The functions [rpd]ellipticalCopula
return a numeric vector
of random variates, probabilities, or densities for the specified
copula computed at grid coordinates u
|v
.
The functions [rpd]ellipticalSlider
display an interactive
graph of an perspective copula plot either for random variates,
probabilities or densities. Alternatively, an image underlayed
contour plot can be shown.
Copula Dependence Measures:
The functions ellipticalTau
and ellipticalRho
return
a numericc value for Kendall's Tau and Spearman's Rho.
Copula Tail Coefficient:
The function ellipticalTailCoeff
returns the coefficient of
tail dependence for a specified copula. The function
ellipticalTailPlot
displays a whole plot for the upper or
alternatively for the lower tail dependence as a function of
u
for a set of nine rho
values.
Copula Generator Function:
The function gfunc
computes the generator function for the
specified copula, by default the normal copula. If the argument
x
is missing, then the normalization constand lambda will
be returned, otherwise if x
is specified the values for the
function g(x) will be freturned. The selected type of copula
is added to the output as an attribute named "control"
.
The function gfuncSlider
allows to display interactively
the generator function, the marginal density, the marginal
probability, and the contours of the the bivariate density.
Copula Simulation and Parameter Fitting:
The function ellipticalCopulaSim
returns a numeric two-column
matrix with randomly generated variates for the specified copula.
The function ellipticalCopulaFit
returns a fit to empirical
data for the specified copula. The returned object is a list with
elements from the function nlminb
.
Author(s)
Diethelm Wuertz for the Rmetrics R-port.
Examples
## [rp]ellipticalCopula -
# Default Normal Copula:
rellipticalCopula(10)
pellipticalCopula(10)
## [rp]ellipticalCopula -
# Student-t Copula Probability and Density:
u = grid2d(x = (0:25)/25)
pellipticalCopula(u, rho = 0.75, param = 4,
type = "t", output = "list")
d <- dellipticalCopula(u, rho = 0.75, param = 4,
type = "t", output = "list")
persp(d, theta = -40, phi = 30, col = "steelblue")
## ellipticalTau -
## ellipticalRho -
# Dependence Measures:
ellipticalTau(rho = -0.5)
ellipticalRho(rho = 0.75, type = "logistic", subdivisions = 100)
## ellipticalTailCoeff -
# Student-t Tail Coefficient:
ellipticalTailCoeff(rho = 0.25, param = 3, type = "t")
## gfunc -
# Generator Function:
plot(gfunc(x = 0:10), main = "Generator Function")
## ellipticalCopulaSim -
## ellipticalCopulaSim -
# Simualtion and Parameter Fitting:
rv <- ellipticalCopulaSim(n = 100, rho = 0.75)
ellipticalCopulaFit(rv)