| snig {fBasics} | R Documentation | 
Standardized Normal Inverse Gaussian Distribution
Description
Density, distribution function, quantile function and random generation for the standardized normal inverse Gaussian distribution.
Usage
dsnig(x, zeta = 1, rho = 0, log = FALSE)
psnig(q, zeta = 1, rho = 0)
qsnig(p, zeta = 1, rho = 0)
rsnig(n, zeta = 1, rho = 0)
Arguments
x, q | 
 a numeric vector of quantiles.  | 
p | 
 a numeric vector of probabilities.  | 
n | 
 number of observations.  | 
zeta | 
 shape parameter   | 
rho | 
 skewness parameter, a number in the range   | 
log | 
 a logical flag by default   | 
Details
dsnig gives the density,
psnig gives the distribution function,
qsnig gives the quantile function, and
rsnig generates random deviates.
The random deviates are calculated with the method described by Raible (2000).
Value
numeric vector
Author(s)
Diethelm Wuertz
Examples
   
## snig -
   set.seed(1953)
   r = rsnig(5000, zeta = 1, rho = 0.5)
   plot(r, type = "l", col = "steelblue",
     main = "snig: zeta=1 rho=0.5")
 
## snig - 
   # Plot empirical density and compare with true density:
   hist(r, n = 50, probability = TRUE, border = "white", col = "steelblue")
   x = seq(-5, 5, length = 501)
   lines(x, dsnig(x, zeta = 1, rho = 0.5))
 
## snig -  
   # Plot df and compare with true df:
   plot(sort(r), (1:5000/5000), main = "Probability", col = "steelblue")
   lines(x, psnig(x, zeta = 1, rho = 0.5))
   
## snig -
   # Compute Quantiles:
   qsnig(psnig(seq(-5, 5, 1), zeta = 1, rho = 0.5), zeta = 1, rho = 0.5) 
[Package fBasics version 4032.96 Index]