sgh {fBasics} | R Documentation |
Standardized Generalized Hyperbolic Distribution
Description
Density, distribution function, quantile function and random generation for the standardized generalized hyperbolic distribution.
Usage
dsgh(x, zeta = 1, rho = 0, lambda = 1, log = FALSE)
psgh(q, zeta = 1, rho = 0, lambda = 1)
qsgh(p, zeta = 1, rho = 0, lambda = 1)
rsgh(n, zeta = 1, rho = 0, lambda = 1)
Arguments
x , q |
a numeric vector of quantiles. |
p |
a numeric vector of probabilities. |
n |
number of observations. |
zeta |
shape parameter, a positive number. |
rho |
skewness parameter, a number in the range |
lambda |
?? |
log |
a logical flag by default |
Details
dsgh
gives the density,
psgh
gives the distribution function,
qsgh
gives the quantile function, and
rsgh
generates random deviates.
The generator rsgh
is based on the GH algorithm given by Scott (2004).
Value
numeric vector
Author(s)
Diethelm Wuertz
Examples
## rsgh -
set.seed(1953)
r = rsgh(5000, zeta = 1, rho = 0.5, lambda = 1)
plot(r, type = "l", col = "steelblue",
main = "gh: zeta=1 rho=0.5 lambda=1")
## dsgh -
# Plot empirical density and compare with true density:
hist(r, n = 50, probability = TRUE, border = "white", col = "steelblue",
ylim = c(0, 0.6))
x = seq(-5, 5, length = 501)
lines(x, dsgh(x, zeta = 1, rho = 0.5, lambda = 1))
## psgh -
# Plot df and compare with true df:
plot(sort(r), (1:5000/5000), main = "Probability", col = "steelblue")
lines(x, psgh(x, zeta = 1, rho = 0.5, lambda = 1))
## qsgh -
# Compute Quantiles:
round(qsgh(psgh(seq(-5, 5, 1), zeta = 1, rho = 0.5), zeta = 1, rho = 0.5), 4)
[Package fBasics version 4032.96 Index]