| ghMoments {fBasics} | R Documentation |
Generalized Hyperbolic Distribution Moments
Description
Calculates moments of the generalized hyperbolic distribution.
Usage
ghMean(alpha=1, beta=0, delta=1, mu=0, lambda=-1/2)
ghVar(alpha=1, beta=0, delta=1, mu=0, lambda=-1/2)
ghSkew(alpha=1, beta=0, delta=1, mu=0, lambda=-1/2)
ghKurt(alpha=1, beta=0, delta=1, mu=0, lambda=-1/2)
ghMoments(order, type = c("raw", "central", "mu"),
alpha = 1, beta=0, delta=1, mu=0, lambda=-1/2)
Arguments
alpha |
numeric value, the first shape parameter. |
beta |
numeric value, the second shape parameter in the range |
delta |
numeric value, the scale parameter, must be zero or positive. |
mu |
numeric value, the location parameter, by default 0. |
lambda |
numeric value, defines the sublclass, by default |
order |
an integer value, the order of the moment. |
type |
a character value,
|
Value
a named numerical value. The name is one
of mean, var, skew, or kurt, obtained by
dropping the nig prefix from the name of the corresponding
function and lowercasing it.
for ghMoments, the name is obtained by paste0("m", order, type).
Author(s)
Diethelm Wuertz
References
Scott, D. J., Wuertz, D. and Tran, T. T. (2008) Moments of the Generalized Hyperbolic Distribution. Preprint.
Examples
## ghMean -
ghMean(alpha=1.1, beta=0.1, delta=0.8, mu=-0.3, lambda=1)
## ghKurt -
ghKurt(alpha=1.1, beta=0.1, delta=0.8, mu=-0.3, lambda=1)
## ghMoments -
ghMoments(4,
alpha=1.1, beta=0.1, delta=0.8, mu=-0.3, lambda=1)
ghMoments(4, "central",
alpha=1.1, beta=0.1, delta=0.8, mu=-0.3, lambda=1)