ghMode {fBasics} | R Documentation |
Generalized Hyperbolic Mode
Description
Computes the mode of the generalized hyperbolic function.
Usage
ghMode(alpha = 1, beta = 0, delta = 1, mu = 0, lambda = -1/2)
Arguments
alpha |
first shape parameter. |
beta |
second shape parameter, should in the range |
delta |
scale parameter, must be zero or positive. |
mu |
location parameter, by default 0. |
lambda |
defines the sublclass, by default |
Details
The meanings of the parameters correspond to the first
parameterization, see gh
for further details.
Value
a numeric value, the mode of the generalized hyperbolic distribution
References
Atkinson, A.C. (1982); The simulation of generalized inverse Gaussian and hyperbolic random variables, SIAM J. Sci. Stat. Comput. 3, 502–515.
Barndorff-Nielsen O. (1977); Exponentially decreasing distributions for the logarithm of particle size, Proc. Roy. Soc. Lond., A353, 401–419.
Barndorff-Nielsen O., Blaesild, P. (1983); Hyperbolic distributions. In Encyclopedia of Statistical Sciences, Eds., Johnson N.L., Kotz S. and Read C.B., Vol. 3, pp. 700–707. New York: Wiley.
Raible S. (2000); Levy Processes in Finance: Theory, Numerics and Empirical Facts, PhD Thesis, University of Freiburg, Germany, 161 pages.
Examples
## ghMode -
ghMode()