| radf_wb_cv2 {exuber} | R Documentation | 
Wild Bootstrap Critical Values
Description
radf_wb_cv performs the Phillips & Shi (2020) wild bootstrap re-sampling
scheme, which is asymptotically robust to non-stationary volatility, to
generate critical values for the recursive unit root tests. radf_wb_distr2
computes the distribution.
Usage
radf_wb_cv2(
  data,
  minw = NULL,
  nboot = 500L,
  adflag = 0,
  type = c("fixed", "aic", "bic"),
  tb = NULL,
  seed = NULL
)
radf_wb_distr2(
  data,
  minw = NULL,
  nboot = 500L,
  adflag = 0,
  type = c("fixed", "aic", "bic"),
  tb = NULL,
  seed = NULL
)
Arguments
data | 
 A univariate or multivariate numeric time series object, a numeric vector or matrix, or a data.frame. The object should not have any NA values.  | 
minw | 
 A positive integer. The minimum window size (default =
  | 
nboot | 
 A positive integer. Number of bootstraps (default = 500L).  | 
adflag | 
 A positive integer. Number of lags when type is "fixed" or number of max lags when type is either "aic" or "bic".  | 
type | 
 Character. "fixed" for fixed lag, "aic" or "bic" for automatic lag selection according to the criterion.  | 
tb | 
 A positive integer. The simulated sample size.  | 
seed | 
 An object specifying if and how the random number generator (rng)
should be initialized. Either NULL or an integer will be used in a call to
  | 
Value
For radf_wb_cv2 a list that contains the critical values for the ADF,
BADF, BSADF and GSADF tests. For radf_wb_distr a list that
contains the ADF, SADF and GSADF distributions.
References
Phillips, P. C., & Shi, S. (2020). Real time monitoring of asset markets: Bubbles and crises. In Handbook of Statistics (Vol. 42, pp. 61-80). Elsevier.
Phillips, P. C. B., Shi, S., & Yu, J. (2015). Testing for Multiple Bubbles: Historical Episodes of Exuberance and Collapse in the S&P 500. International Economic Review, 56(4), 1043-1078.
See Also
radf_mc_cv for Monte Carlo critical values and
radf_sb_cv for sieve bootstrap critical values.
Examples
# Default minimum window
wb <- radf_wb_cv2(sim_data)
tidy(wb)
# Change the minimum window and the number of bootstraps
wb2 <- radf_wb_cv2(sim_data, nboot = 600, minw = 20)
tidy(wb2)
# Simulate distribution
wdist <- radf_wb_distr(sim_data)
autoplot(wdist)