cdf {extremis} | R Documentation |
Empirical Scedasis Distribution Function
Description
This function computes the empirical scedasis distribution function.
Usage
cdf(Y, threshold = quantile(Y[, 2], 0.95))
Arguments
Y |
data frame from which the estimate is to be computed; first column corresponds to time and the second to the variable of interest. |
threshold |
value used to threshold the data |
Details
The empirical scedasis distribution function was introduced by Einmahl et al (2016).
Value
C |
empirical scedasis distribution function. |
w |
standardized indices of exceedances. |
k |
number of exceedances above a threshold. |
Y |
raw data. |
The plot
method depicts the empirical cumulative scedasis
function, and the reference line for the case of constant frequency of
extremes over time (if uniform = TRUE
).
Author(s)
Miguel de Carvalho
References
Einmahl, J. H., Haan, L., and Zhou, C. (2016) Statistics of heteroscedastic extremes. Journal of the Royal Statistical Society: Ser. B, 78(1), 31–51.
Examples
data(sp500)
attach(sp500)
Y <- data.frame(date[-1], -diff(log(close)))
fit <- cdf(Y)
plot(fit)
plot(fit, original = FALSE)