cdensity {extremis} | R Documentation |
Kernel Smoothed Scedasis Density
Description
This function computes a kernel scedasis density estimate.
Usage
cdensity(Y, threshold = quantile(Y[, 2], 0.95), ...)
Arguments
Y |
data frame from which the estimate is to be computed; first column corresponds to time and the second to the variable of interest. |
threshold |
value used to threshold the data |
... |
further arguments for |
Details
Kernel smoothing for the scedasis density was introduced by Einmahl et al (2016).
Value
c |
scedasis density estimator. |
k |
number of exceedances above the threshold. |
w |
standardized indices of exceedances. |
Y |
raw data. |
The plot
method depicts the smooth scedasis density.
Author(s)
Miguel de Carvalho
References
Einmahl, J. H., Haan, L., and Zhou, C. (2016) Statistics of heteroscedastic extremes. Journal of the Royal Statistical Society: Ser. B, 78(1), 31–51.
Examples
data(lse)
attach(lse)
Y <- data.frame(DATE[-1], -diff(log(ROYAL.DUTCH.SHELL.B)))
T <- dim(Y)[1]
k <- floor((0.4258597) * T / (log(T)))
fit <- cdensity(Y, kernel = "biweight", bw = 0.1 / sqrt(7),
threshold = sort(Y[, 2])[T - k])
plot(fit)
plot(fit, original = FALSE)
[Package extremis version 1.2.1 Index]