hill.ts {extremefit} | R Documentation |
Compute the extreme quantile procedure on a time dependent data
Description
Compute the function hill.adapt on time dependent data.
Usage
hill.ts(X, t, Tgrid = seq(min(t), max(t), length = 10), h,
kernel = TruncGauss.kernel, kpar = NULL, CritVal = 3.6,
gridlen = 100, initprop = 1/10, r1 = 1/4, r2 = 1/20)
## S3 method for class 'hill.ts'
print(x, ...)
Arguments
X |
a vector of the observed values. |
t |
a vector of time covariates which should have the same length as X. |
Tgrid |
a grid of time (can be any sequence in the interval |
h |
a bandwidth value (vector values are not admitted). |
kernel |
a kernel function used to compute the weights in the time domain, with default the truncated Gaussian kernel. |
kpar |
a value for the kernel function parameter, with no default value. |
CritVal |
a critical value associated to the kernel function given by |
gridlen |
the gridlen parameter used in the function hill.adapt. The length of the grid for which the test will be done. |
initprop |
the initprop parameter used in the function hill.adapt. The initial proportion at which we will begin to test the model. |
r1 |
the r1 parameter used in the function hill.adapt. The proportion from the right that we will skip in the test statistic. |
r2 |
the r2 parameter used in the function hill.adapt. The proportion from the left that we will skip in the test statistic. |
x |
the result of the hill.ts function |
... |
further arguments to be passed from or to other methods. |
Details
For a given time serie and kernel function, the function hill.ts will give the results of the adaptive procedure for each t
. The adaptive procedure is described in Durrieu et al. (2005).
The kernel implemented in this packages are : Biweight kernel, Epanechnikov kernel, Rectangular kernel, Triangular kernel and the truncated Gaussian kernel.
Value
Tgrid |
the given vector |
h |
the given value |
Threshold |
the adaptive threshold |
Theta |
the adaptive estimator of |
References
Durrieu, G. and Grama, I. and Pham, Q. and Tricot, J.- M (2015). Nonparametric adaptive estimator of extreme conditional tail probabilities quantiles. Extremes, 18, 437-478.
Durrieu, G. and Grama, I. and Jaunatre, K. and Pham, Q.-K. and Tricot, J.-M. (2018). extremefit: A Package for Extreme Quantiles. Journal of Statistical Software, 87, 1–20.
See Also
hill.adapt
, Biweight.kernel
, Epa.kernel
, Rectangular.kernel
, Triang.kernel
, TruncGauss.kernel
Examples
theta <- function(t){
0.5+0.25*sin(2*pi*t)
}
n <- 5000
t <- 1:n/n
Theta <- theta(t)
Data <- NULL
Tgrid <- seq(0.01, 0.99, 0.01)
#example with fixed bandwidth
## Not run: #For computing time purpose
for(i in 1:n){
Data[i] <- rparetomix(1, a = 1/Theta[i], b = 5/Theta[i]+5, c = 0.75, precision = 10^(-5))
}
#example
hgrid <- bandwidth.grid(0.009, 0.2, 20, type = "geometric")
TgridCV <- seq(0.01, 0.99, 0.1)
hcv <- bandwidth.CV(Data, t, TgridCV, hgrid, pcv = 0.99, TruncGauss.kernel,
kpar = c(sigma = 1), CritVal = 3.6, plot = TRUE)
Tgrid <- seq(0.01, 0.99, 0.01)
hillTs <- hill.ts(Data, t, Tgrid, h = hcv$h.cv, kernel = TruncGauss.kernel,
kpar = c(sigma = 1), CritVal = 3.6,gridlen = 100, initprop = 1/10, r1 = 1/4, r2 = 1/20)
plot(hillTs$Tgrid, hillTs$Theta, xlab = "t", ylab = "Estimator of theta")
lines(t, Theta, col = "red")
## End(Not run)