| bootCI.ts {extremefit} | R Documentation | 
Pointwise confidence intervals by bootstrap
Description
Pointwise quantiles and survival probabilities confidence intervals using bootstrap.
Usage
bootCI.ts(X, t, Tgrid, h, kernel = TruncGauss.kernel, kpar = NULL,
  prob = 0.99, threshold = quantile(X, 0.99), B = 100,
  alpha = 0.05, type = "quantile", CritVal = 3.6, initprop = 1/10,
  gridlen = 100, r1 = 1/4, r2 = 1/20, plot = F)
Arguments
X | 
 a vector of the observed values.  | 
t | 
 a vector of time covariates which should have the same length as X.  | 
Tgrid | 
 a sequence of times used to perform the cross validation (can be any sequence in the interval   | 
h | 
 a bandwidth value (vector values are not admitted).  | 
kernel | 
 a kernel function used to compute the weights in the time domain, with default the truncated gaussian kernel.  | 
kpar | 
 a value for the kernel function parameter, with no default value.  | 
prob | 
 used if type = "quantile", a scalar value in   | 
threshold | 
 used if type = "survival", a scalar value in the domain of X.  | 
B | 
 an integer giving the number of bootstrap iterations.  | 
alpha | 
 the type 1 error of the bootstrap (1-  | 
type | 
 type is either "quantile" or "survival".  | 
CritVal | 
 a critical value associated to the kernel function given by   | 
gridlen, initprop, r1, r2 | 
 parameters used in the function hill.adapt (see   | 
plot | 
 If   | 
Details
For each point in Tgrid, generate B samples of X with replacement to estimate the quantile of order prob or the survival probability beyond threshold. Determine the bootstrap pointwise (1-alpha)-confidence interval for the quantiles or the survival probabilities.
The kernel implemented in this packages are : Biweight kernel, Epanechnikov kernel, Rectangular kernel, Triangular kernel and the truncated Gaussian kernel.
Value
LowBound | 
 the lower bound of the bootstrap (1-  | 
UppBound | 
 the upper bound of the bootstrap (1-  | 
Warning
The executing time of the function can be time consuming if the B parameter or the sample size are high (B=100 and the sample size = 5000 for example) .
See Also
hill.ts,predict.hill.ts, Biweight.kernel, Epa.kernel, Rectangular.kernel, Triang.kernel, TruncGauss.kernel
Examples
theta <- function(t){
   0.5+0.25*sin(2*pi*t)
 }
n <- 5000
t <- 1:n/n
Theta <- theta(t)
set.seed(123)
Data <- NULL
for(i in 1:n){
   Data[i] <- rparetomix(1, a = 1/Theta[i], b = 1/Theta[i]+5, c = 0.75)
 }
Tgrid <- seq(1, length(Data)-1, length = 20)/n
h <- 0.1
## Not run:  #For computing time purpose
  bootCI.ts(Data, t, Tgrid, h, kernel = TruncGauss.kernel, kpar = c(sigma = 1),
            CritVal = 3.6, threshold = 2, type = "survival", B = 100, plot = TRUE)
  true.p <- NULL
  for(i in 1:n){
     true.p[i] <- 1-pparetomix(2, a = 1/Theta[i], b = 1/Theta[i]+5, c = 0.75)
   }
  lines(t, true.p, col = "red")
  bootCI.ts(Data, t, Tgrid, h, kernel = TruncGauss.kernel, kpar = c(sigma = 1),
 prob = 0.999, type = "quantile", B = 100, plot = TRUE)
  true.quantile <- NULL
  for(i in 1:n){
     true.quantile[i] <- qparetomix(0.999, a = 1/Theta[i], b = 1/Theta[i]+5, c = 0.75)
   }
  lines(t, log(true.quantile), col = "red")
## End(Not run)