CriticalValue {extremefit} | R Documentation |
Computation of the critical value in the hill.adapt function
Description
For a given kernel function, compute the critical value (CritVal) of the test statistic in the hill.adapt function by Monte-Carlo simulations.
Usage
CriticalValue(NMC, n, kernel = TruncGauss.kernel, kpar = NULL,
prob = 0.95, gridlen = 100, initprop = 0.1, r1 = 0.25,
r2 = 0.05, plot = FALSE)
Arguments
NMC |
the number of Monte-Carlo simulations. |
n |
the sample size. |
kernel |
a kernel function for which the critical value is computed. The available kernel functions are Epanechnikov, Triangular, Truncated Gaussian, Biweight and Rectangular. The truncated gaussian kernel is by default. |
kpar |
a value for the kernel function parameter, with no default value. |
prob |
a vector of type 1 errors. |
gridlen , initprop , r1 , r2 |
parameters used in the function hill.adapt (see |
plot |
If |
Value
For the type 1 errors prob
, this function returns the critical values.
References
Durrieu, G. and Grama, I. and Pham, Q. and Tricot, J.- M (2015). Nonparametric adaptive estimator of extreme conditional tail probabilities quantiles. Extremes, 18, 437-478.
See Also
Examples
n <- 1000
NMC <- 500
prob <- c(0.99)
## Not run: #For computing time purpose
CriticalValue(NMC, n, TruncGauss.kernel, kpar = c(sigma = 1), prob, gridlen = 100 ,
initprop = 1/10, r1 = 1/4, r2 = 1/20, plot = TRUE)
## End(Not run)