quantGPD {extremeStat} | R Documentation |
Fast GPD quantile estimate
Description
Fast GPD quantile estimate through L-moments
Usage
quantGPD(
x,
probs = c(0.8, 0.9, 0.99),
truncate = 0,
threshold = berryFunctions::quantileMean(x, truncate),
addn = TRUE,
quiet = FALSE,
...
)
Arguments
x |
Vector with numeric values. NAs are silently ignored. |
probs |
Probabilities. DEFAULT: c(0.8,0.9,0.99) |
truncate , threshold |
Truncation proportion or threshold. DEFAULT: 0, computed
See |
addn |
Logical: add element with sample size (after truncation). DEFAULT: TRUE |
quiet |
Should messages from this function be suppressed? DEFAULT: FALSE |
... |
Further arguments passed to |
Value
Vector with quantiles
Author(s)
Berry Boessenkool, berry-b@gmx.de, Jun 2017
See Also
q_gpd
for a comparison across R packages and methods, distLquantile
to compare distributions
Examples
data(annMax)
quantile(annMax, 0.99)
quantGPD(annMax, 0.99)
## Not run: # Excluded from CRAN checks to reduce checking time
data(rain, package="ismev") ; rain <- rain[rain>0]
hist(rain, breaks=50, col=7)
tr <- seq(0,0.999, len=50)
qu <- pbapply::pbsapply(tr, quantGPD, x=rain, probs=c(0.9,0.99,0.999) ) # 30 s
plot(tr, qu[3,], ylim=range(rain), las=1, type="l")
lines(tr, qu[2,], col=2); lines(tr, qu[1,], col=4)
tr <- seq(0.88,0.999, len=50)
qu <- pbapply::pbsapply(tr, quantGPD, x=rain, probs=c(0.9,0.99,0.999) ) # 5 s
plot(tr, qu[3,], ylim=range(rain), las=1, type="l")
lines(tr, qu[2,], col=2); lines(tr, qu[1,], col=4);
tail(qu["n",])
library(microbenchmark)
data(rain, package="ismev"); rain <- rain[rain>0]
mb <- microbenchmark(quantGPD(rain[1:200], truncate=0.8, probs=0.99, addn=F),
distLquantile(rain[1:200], sel="gpa", emp=F, truncate=0.8, quiet=T, probs=0.99)[1,1]
)
boxplot(mb)
# since computing the lmoments takes most of the computational time,
# there's not much to optimize in large samples like n=2000
## End(Not run)
[Package extremeStat version 1.5.9 Index]