Wald {extraDistr} | R Documentation |
Wald (inverse Gaussian) distribution
Description
Density, distribution function and random generation for the Wald distribution.
Usage
dwald(x, mu, lambda, log = FALSE)
pwald(q, mu, lambda, lower.tail = TRUE, log.p = FALSE)
rwald(n, mu, lambda)
Arguments
x , q |
vector of quantiles. |
mu , lambda |
location and shape parameters. Scale must be positive. |
log , log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are |
n |
number of observations. If |
p |
vector of probabilities. |
Details
Probability density function
f(x) = \sqrt{\frac{\lambda}{2\pi x^3}} \exp\left( \frac{-\lambda(x-\mu)^2}{2\mu^2 x} \right)
Cumulative distribution function
F(x) = \Phi\left(\sqrt{\frac{\lambda}{x}} \left(\frac{x}{\mu}-1 \right) \right) +
\exp\left(\frac{2\lambda}{\mu} \right) \Phi\left(\sqrt{\frac{\lambda}{x}}
\left(\frac{x}{\mu}+1 \right) \right)
Random generation is done using the algorithm described by Michael, Schucany and Haas (1976).
References
Michael, J.R., Schucany, W.R., and Haas, R.W. (1976). Generating Random Variates Using Transformations with Multiple Roots. The American Statistician, 30(2): 88-90.
Examples
x <- rwald(1e5, 5, 16)
hist(x, 100, freq = FALSE)
curve(dwald(x, 5, 16), 0, 50, col = "red", add = TRUE)
hist(pwald(x, 5, 16))
plot(ecdf(x))
curve(pwald(x, 5, 16), 0, 50, col = "red", lwd = 2, add = TRUE)