| InvChiSq {extraDistr} | R Documentation | 
Inverse chi-squared and scaled chi-squared distributions
Description
Density, distribution function and random generation for the inverse chi-squared distribution and scaled chi-squared distribution.
Usage
dinvchisq(x, nu, tau, log = FALSE)
pinvchisq(q, nu, tau, lower.tail = TRUE, log.p = FALSE)
qinvchisq(p, nu, tau, lower.tail = TRUE, log.p = FALSE)
rinvchisq(n, nu, tau)
Arguments
x, q | 
 vector of quantiles.  | 
nu | 
 positive valued shape parameter.  | 
tau | 
 positive valued scaling parameter; if provided it returns values for scaled chi-squared distributions.  | 
log, log.p | 
 logical; if TRUE, probabilities p are given as log(p).  | 
lower.tail | 
 logical; if TRUE (default), probabilities are   | 
p | 
 vector of probabilities.  | 
n | 
 number of observations. If   | 
Details
If X follows \chi^2 (\nu) distribution, then 1/X follows inverse
chi-squared distribution parametrized by \nu. Inverse chi-squared distribution
is a special case of inverse gamma distribution with parameters
\alpha=\frac{\nu}{2} and \beta=\frac{1}{2};
or \alpha=\frac{\nu}{2} and
\beta=\frac{\nu\tau^2}{2} for scaled inverse
chi-squared distribution.
See Also
Examples
x <- rinvchisq(1e5, 20)
hist(x, 100, freq = FALSE)
curve(dinvchisq(x, 20), 0, 1, n = 501, col = "red", add = TRUE)
hist(pinvchisq(x, 20))
plot(ecdf(x))
curve(pinvchisq(x, 20), 0, 1, n = 501, col = "red", lwd = 2, add = TRUE)
# scaled
x <- rinvchisq(1e5, 10, 5)
hist(x, 100, freq = FALSE)
curve(dinvchisq(x, 10, 5), 0, 150, n = 501, col = "red", add = TRUE)
hist(pinvchisq(x, 10, 5))
plot(ecdf(x))
curve(pinvchisq(x, 10, 5), 0, 150, n = 501, col = "red", lwd = 2, add = TRUE)