| HalfNormal {extraDistr} | R Documentation | 
Half-normal distribution
Description
Density, distribution function, quantile function and random generation for the half-normal distribution.
Usage
dhnorm(x, sigma = 1, log = FALSE)
phnorm(q, sigma = 1, lower.tail = TRUE, log.p = FALSE)
qhnorm(p, sigma = 1, lower.tail = TRUE, log.p = FALSE)
rhnorm(n, sigma = 1)
Arguments
x, q | 
 vector of quantiles.  | 
sigma | 
 positive valued scale parameter.  | 
log, log.p | 
 logical; if TRUE, probabilities p are given as log(p).  | 
lower.tail | 
 logical; if TRUE (default), probabilities are   | 
p | 
 vector of probabilities.  | 
n | 
 number of observations. If   | 
Details
If X follows normal distribution centered at 0 and parametrized
by scale \sigma, then |X| follows half-normal distribution
parametrized by scale \sigma. Half-t distribution with \nu=\infty
degrees of freedom converges to half-normal distribution.
References
Gelman, A. (2006). Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper). Bayesian analysis, 1(3), 515-534.
Jacob, E. and Jayakumar, K. (2012). On Half-Cauchy Distribution and Process. International Journal of Statistika and Mathematika, 3(2), 77-81.
See Also
Examples
x <- rhnorm(1e5, 2)
hist(x, 100, freq = FALSE)
curve(dhnorm(x, 2), 0, 8, col = "red", add = TRUE)
hist(phnorm(x, 2))
plot(ecdf(x))
curve(phnorm(x, 2), 0, 8, col = "red", lwd = 2, add = TRUE)