DiscreteGamma {extraDistr} | R Documentation |
Discrete gamma distribution
Description
Probability mass function, distribution function and random generation for discrete gamma distribution.
Usage
ddgamma(x, shape, rate = 1, scale = 1/rate, log = FALSE)
pdgamma(q, shape, rate = 1, scale = 1/rate, lower.tail = TRUE, log.p = FALSE)
rdgamma(n, shape, rate = 1, scale = 1/rate)
Arguments
x , q |
vector of quantiles. |
shape , scale |
shape and scale parameters. Must be positive, scale strictly. |
rate |
an alternative way to specify the scale. |
log , log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are |
n |
number of observations. If |
Details
Probability mass function of discrete gamma distribution f_Y(y)
is defined by discretization of continuous gamma distribution
f_Y(y) = S_X(y) - S_X(y+1)
where S_X
is a survival function of continuous gamma distribution.
References
Chakraborty, S. and Chakravarty, D. (2012). Discrete Gamma distributions: Properties and parameter estimations. Communications in Statistics-Theory and Methods, 41(18), 3301-3324.
See Also
Examples
x <- rdgamma(1e5, 9, 1)
xx <- 0:50
plot(prop.table(table(x)))
lines(xx, ddgamma(xx, 9, 1), col = "red")
hist(pdgamma(x, 9, 1))
plot(ecdf(x))
xx <- seq(0, 50, 0.1)
lines(xx, pdgamma(xx, 9, 1), col = "red", lwd = 2, type = "s")