| BivNormal {extraDistr} | R Documentation | 
Bivariate normal distribution
Description
Density, distribution function and random generation for the bivariate normal distribution.
Usage
dbvnorm(
  x,
  y = NULL,
  mean1 = 0,
  mean2 = mean1,
  sd1 = 1,
  sd2 = sd1,
  cor = 0,
  log = FALSE
)
rbvnorm(n, mean1 = 0, mean2 = mean1, sd1 = 1, sd2 = sd1, cor = 0)
Arguments
x, y | 
 vectors of quantiles; alternatively x may be a two-column matrix (or data.frame) and y may be omitted.  | 
mean1, mean2 | 
 vectors of means.  | 
sd1, sd2 | 
 vectors of standard deviations.  | 
cor | 
 vector of correlations (  | 
log | 
 logical; if TRUE, probabilities p are given as log(p).  | 
n | 
 number of observations. If   | 
Details
Probability density function
f(x) = \frac{1}{2\pi\sqrt{1-\rho^2}\sigma_1\sigma_2}
       \exp\left\{-\frac{1}{2(1-\rho^2)} \left[\left(\frac{x_1 - \mu_1}{\sigma_1}\right)^2 -
       2\rho \left(\frac{x_1 - \mu_1}{\sigma_1}\right) \left(\frac{x_2 - \mu_2}{\sigma_2}\right) +
       \left(\frac{x_2 - \mu_2}{\sigma_2}\right)^2\right]\right\}
References
Krishnamoorthy, K. (2006). Handbook of Statistical Distributions with Applications. Chapman & Hall/CRC
Mukhopadhyay, N. (2000). Probability and statistical inference. Chapman & Hall/CRC
See Also
Examples
y <- x <- seq(-4, 4, by = 0.25)
z <- outer(x, y, function(x, y) dbvnorm(x, y, cor = -0.75))
persp(x, y, z)
y <- x <- seq(-4, 4, by = 0.25)
z <- outer(x, y, function(x, y) dbvnorm(x, y, cor = -0.25))
persp(x, y, z)