BetaBinom {extraDistr} | R Documentation |
Beta-binomial distribution
Description
Probability mass function and random generation for the beta-binomial distribution.
Usage
dbbinom(x, size, alpha = 1, beta = 1, log = FALSE)
pbbinom(q, size, alpha = 1, beta = 1, lower.tail = TRUE, log.p = FALSE)
rbbinom(n, size, alpha = 1, beta = 1)
Arguments
x , q |
vector of quantiles. |
size |
number of trials (zero or more). |
alpha , beta |
non-negative parameters of the beta distribution. |
log , log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are |
n |
number of observations. If |
Details
If p \sim \mathrm{Beta}(\alpha, \beta)
and
X \sim \mathrm{Binomial}(n, p)
, then
X \sim \mathrm{BetaBinomial}(n, \alpha, \beta)
.
Probability mass function
f(x) = {n \choose x} \frac{\mathrm{B}(x+\alpha, n-x+\beta)}{\mathrm{B}(\alpha, \beta)}
Cumulative distribution function is calculated using recursive algorithm that employs the fact that
\Gamma(x) = (x - 1)!
, and
\mathrm{B}(x, y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}
, and that
{n \choose k} = \prod_{i=1}^k \frac{n+1-i}{i}
. This enables re-writing probability mass function as
f(x) = \left( \prod_{i=1}^x \frac{n+1-i}{i} \right) \frac{\frac{(\alpha+x-1)!\,(\beta+n-x-1)!}{(\alpha+\beta+n-1)!}}{\mathrm{B}(\alpha,\beta)}
what makes recursive updating from x
to x+1
easy using the properties of factorials
f(x+1) = \left( \prod_{i=1}^x \frac{n+1-i}{i} \right) \frac{n+1-x+1}{x+1} \frac{\frac{(\alpha+x-1)! \,(\alpha+x)\,(\beta+n-x-1)! \, (\beta+n-x)^{-1}}{(\alpha+\beta+n-1)!\,(\alpha+\beta+n)}}{\mathrm{B}(\alpha,\beta)}
and let's us efficiently calculate cumulative distribution function as a sum of probability mass functions
F(x) = \sum_{k=0}^x f(k)
See Also
Examples
x <- rbbinom(1e5, 1000, 5, 13)
xx <- 0:1000
hist(x, 100, freq = FALSE)
lines(xx-0.5, dbbinom(xx, 1000, 5, 13), col = "red")
hist(pbbinom(x, 1000, 5, 13))
xx <- seq(0, 1000, by = 0.1)
plot(ecdf(x))
lines(xx, pbbinom(xx, 1000, 5, 13), col = "red", lwd = 2)