explor {explor} | R Documentation |
Interface for analysis results exploration
Description
This function launches a shiny app in a web browser in order to do interactive visualisation and exploration of an analysis results.
Usage
explor(obj)
## S3 method for class 'CA'
explor(obj)
## S3 method for class 'textmodel_ca'
explor(obj)
## S3 method for class 'coa'
explor(obj)
## S3 method for class 'MCA'
explor(obj)
## S3 method for class 'speMCA'
explor(obj)
## S3 method for class 'mca'
explor(obj)
## S3 method for class 'acm'
explor(obj)
## S3 method for class 'PCA'
explor(obj)
## S3 method for class 'princomp'
explor(obj)
## S3 method for class 'prcomp'
explor(obj)
## S3 method for class 'pca'
explor(obj)
Arguments
obj |
object containing analysis results |
Details
If you want to display supplementary individuals or variables and you're using
the dudi.coa
function, you can add the coordinates of
suprow
and/or supcol
to as supr
and/or
supr
elements added to your dudi.coa
result (See example).
If you want to display supplementary individuals or variables and you're using
the dudi.acm
function, you can add the coordinates of
suprow
and/or supcol
to as supi
and/or
supv
elements added to your dudi.acm
result (See example).
If you want to display supplementary individuals or variables and you're using
the dudi.pca
function, you can add the coordinates of
suprow
and/or supcol
to as supi
and/or
supv
elements added to your dudi.pca
result (See example).
Value
The function launches a shiny app in the system web browser.
Examples
## Not run:
require(FactoMineR)
## FactoMineR::MCA exploration
data(hobbies)
mca <- MCA(hobbies[1:1000,c(1:8,21:23)], quali.sup = 9:10,
quanti.sup = 11, ind.sup = 1:100, graph = FALSE)
explor(mca)
## FactoMineR::PCA exploration
data(decathlon)
d <- decathlon[,1:12]
pca <- PCA(d, quanti.sup = 11:12, graph = FALSE)
explor(pca)
## End(Not run)
## Not run:
library(ade4)
data(bordeaux)
tab <- bordeaux
row_sup <- tab[5,-4]
col_sup <- tab[-5,4]
coa <- dudi.coa(tab[-5,-4], nf = 5, scannf = FALSE)
coa$supr <- suprow(coa, row_sup)
coa$supc <- supcol(coa, col_sup)
explor(coa)
## End(Not run)
## Not run:
library(ade4)
data(banque)
d <- banque[-(1:100),-(19:21)]
ind_sup <- banque[1:100, -(19:21)]
var_sup <- banque[-(1:100),19:21]
acm <- dudi.acm(d, scannf = FALSE, nf = 5)
acm$supv <- supcol(acm, dudi.acm(var_sup, scannf = FALSE, nf = 5)$tab)
colw <- acm$cw*ncol(d)
X <- acm.disjonctif(ind_sup)
X <- data.frame(t(t(X)/colw) - 1)
acm$supi <- suprow(acm, X)
explor(acm)
## End(Not run)
## Not run:
library(ade4)
data(deug)
d <- deug$tab
sup_var <- d[-(1:10), 8:9]
sup_ind <- d[1:10, -(8:9)]
pca <- dudi.pca(d[-(1:10), -(8:9)], scale = TRUE, scannf = FALSE, nf = 5)
supi <- suprow(pca, sup_ind)
pca$supi <- supi
supv <- supcol(pca, dudi.pca(sup_var, scale = TRUE, scannf = FALSE)$tab)
pca$supv <- supv
explor(pca)
## End(Not run)