| choose_ud {exdex} | R Documentation | 
Threshold u and runs parameter D diagnostic for the D-gaps
estimator
Description
Creates data for a plot to aid the choice of the threshold and
run parameter D for the D-gaps estimator (see
dgaps).  plot.choose_ud creates the plot.
Usage
choose_ud(data, u, D = 1, inc_cens = TRUE)
Arguments
| data | A numeric vector or numeric matrix of raw data.  If  If  | 
| u,D | Numeric vectors.   Any values in  | 
| inc_cens | A logical scalar indicating whether or not to include
contributions from right-censored inter-exceedance times, relating to the
first and last observations. It is known that these times are greater
than or equal to the time observed.
If  | 
Details
For each combination of threshold in u and D
in D the functions dgaps and dgaps_imt
are called in order to estimate \theta and to perform the
information matrix test of Holesovsky and Fusek (2020).
Value
An object (a list) of class c("choose_ud", "exdex")
containing
| imt | an object of class  | 
| theta | a  | 
References
Holesovsky, J. and Fusek, M. Estimation of the extremal index using censored distributions. Extremes 23, 197-213 (2020). doi:10.1007/s10687-020-00374-3
See Also
dgaps for maximum likelihood estimation of the
extremal index \theta using the D-gaps model.
dgaps_imt for the information matrix test under the
D-gaps model
plot.choose_ud to produce the diagnostic plot.
Examples
### S&P 500 index
# Multiple thresholds and left-censoring parameters
u <- quantile(sp500, probs = seq(0.2, 0.9, by = 0.1))
imt_theta <- choose_ud(sp500, u = u, D = 1:5)
plot(imt_theta)
plot(imt_theta, uprob = TRUE)
plot(imt_theta, y = "theta")
# One left-censoring parameter D, many thresholds u
u <- quantile(sp500, probs = seq(0.2, 0.9, by = 0.1))
imt_theta <- choose_ud(sp500, u = u, D = 1)
plot(imt_theta)
plot(imt_theta, y = "theta")
# One threshold u, many left-censoring parameters D
u <- quantile(sp500, probs = 0.9)
imt_theta <- choose_ud(sp500, u = u, D = 1:5)
plot(imt_theta)
plot(imt_theta, y = "theta")
### Newlyn sea surges
u <- quantile(newlyn, probs = seq(0.1, 0.9, by = 0.1))
imt_theta <- choose_ud(newlyn, u = u, D = 1:5)
plot(imt_theta, uprob = TRUE)
### Cheeseboro wind gusts (a matrix containing some NAs)
probs <- c(seq(0.5, 0.95, by = 0.05), 0.99)
u <- quantile(cheeseboro, probs = probs, na.rm = TRUE)
imt_theta <- choose_ud(cheeseboro, u, D = 1:6)
plot(imt_theta, uprob = FALSE, lwd = 2)
### Uccle July temperatures
probs <- c(seq(0.7, 0.95, by = 0.05), 0.99)
u <- quantile(uccle720m, probs = probs, na.rm = TRUE)
imt_theta <- choose_ud(uccle720m, u, D = 1:5)
plot(imt_theta, uprob = TRUE, lwd = 2)