excursions.mc {excursions} | R Documentation |
Excursion sets and contour credible regions using Monte Carlo samples
Description
excursions.mc
is used for calculating excursion sets, contour credible
regions, and contour avoiding sets based on Monte Carlo samples of models.
Usage
excursions.mc(
samples,
alpha,
u,
type,
rho,
reo,
ind,
max.size,
verbose = FALSE
)
Arguments
samples |
Matrix with model Monte Carlo samples. Each column contains a sample of the model. |
alpha |
Error probability for the excursion set. |
u |
Excursion or contour level. |
type |
Type of region:
|
rho |
Marginal excursion probabilities (optional). For contour regions,
provide |
reo |
Reordering (optional). |
ind |
Indices of the nodes that should be analysed (optional). |
max.size |
Maximum number of nodes to include in the set of interest (optional). |
verbose |
Set to TRUE for verbose mode (optional). |
Value
excursions.mc
returns an object of class "excurobj" with the
following elements
E |
Excursion set, contour credible region, or contour avoiding set. |
G |
Contour map set. |
M |
Contour avoiding set. |
F |
The excursion function corresponding to the set |
rho |
Marginal excursion probabilities |
mean |
The mean |
vars |
Marginal variances. |
meta |
A list containing various information about the calculation. |
Author(s)
David Bolin davidbolin@gmail.com and Finn Lindgren finn.lindgren@gmail.com
References
Bolin, D. and Lindgren, F. (2015) Excursion and contour uncertainty regions for latent Gaussian models, JRSS-series B, vol 77, no 1, pp 85-106.
Bolin, D. and Lindgren, F. (2018), Calculating Probabilistic Excursion Sets and Related Quantities Using excursions, Journal of Statistical Software, vol 86, no 1, pp 1-20.
See Also
Examples
## Create mean and a tridiagonal precision matrix
n <- 101
mu.x <- seq(-5, 5, length = n)
Q.x <- Matrix(toeplitz(c(1, -0.1, rep(0, n - 2))))
## Sample the model 100 times (increase for better estimate)
X <- mu.x + solve(chol(Q.x), matrix(rnorm(n = n * 1000), nrow = n, ncol = 1000))
## calculate the positive excursion function
res.x <- excursions.mc(X, alpha = 0.05, type = ">", u = 0)
## Plot the excursion function and the marginal excursion probabilities
plot(res.x$F,
type = "l",
main = "Excursion function (black) and marginal probabilites (red)"
)
lines(res.x$rho, col = 2)