exceedProb {exceedProb} | R Documentation |
Confidence intervals for the exceedance probability
Description
This function obtains confidence intervals for exceedance probability
Usage
exceedProb(cutoff, theta_hat, sd_hat, alpha, d, n, m, interval = c(-100,
100), lower_tail = FALSE)
Arguments
cutoff |
Cutoff values (scalar or vector) |
theta_hat |
Point estimate for the parameter of interest |
sd_hat |
Estimated standard deviation for the parameter of interest (Note: not the standard error) |
alpha |
Significance level |
d |
Number of parameters in the general linear model |
n |
Number of observations in the initial study |
m |
Number of observations in the replication study |
interval |
Interval within which to search for roots |
lower_tail |
If TRUE, reports lower tail probabilities |
Value
ep Exceedance probability with confidence intervals
Examples
library(exceedProb)
# Sample mean -------------------------------------------------------
n <- 100
x <- rnorm(n = n)
theta_hat <- mean(x)
sd_hat <- sd(x)
cutoff <- seq(from = theta_hat - 0.5, to = theta_hat + 0.5, by = 0.1)
exceedProb(cutoff = cutoff,
theta_hat = theta_hat,
sd_hat = sd_hat,
alpha = 0.05,
d = 1,
n = n,
m = n)
# Linear regression -------------------------------------------------
n <- 100
beta <- c(1, 2)
x <-runif(n = n, min = 0, max = 10)
y <- rnorm(n = n, mean = cbind(1, x) %*% beta, sd = 1)
j <- 2
fit <- lm(y ~ x)
theta_hat <- coef(fit)[j]
sd_hat <- sqrt(n * vcov(fit)[j, j])
cutoff <- seq(from = theta_hat - 0.5, to = theta_hat + 0.5, by = 0.1)
exceedProb(cutoff = cutoff,
theta_hat = theta_hat,
sd_hat = sd_hat,
alpha = 0.05,
d = length(beta),
n = n,
m = n)
[Package exceedProb version 0.0.1 Index]