| lmr_data {exams.forge} | R Documentation |
lm Simple Linear Regression
Description
Computes an lm object for a simple linear regression from a range of x and y values,
including intermediate values. If r is not given then zero correlation is used (with cor_data).
digits determines the rounding for the x and y values. If only one value is given, then
it will be used for x and y. If no value is given then it will be determined from
the x and y values by 3+ceiling(-log10(diff(range(.)))).
Usage
lmr_data(xr, yr, n, r = 0, digits = NULL, ...)
lm_regression_data(xr, yr, n, r = 0, digits = NULL, ...)
Arguments
xr |
numeric: range of x values |
yr |
numeric: range of y values |
n |
numeric: number of observations to generate |
r |
numeric: desired correlation, uses |
digits |
numeric(2): digits for rounding, for x |
... |
further parameters used in |
Value
An object of the class lm with the additional components:
-
xthe generated x values -
ythe generated y values -
sumx\sum_{i=1}^n x_i -
sumy\sum_{i=1}^n y_i -
sumx2\sum_{i=1}^n x_i^2 -
sumy2\sum_{i=1}^n y_i^2 -
sumxy\sum_{i=1}^n x_i y_i -
meanxthe mean of x:1/n \sum_{i=1}^n x_i -
meanythe mean of y:1/n \sum_{i=1}^n y_i -
varxthe variation of x:\sum_{i=1}^n (x_i-\bar{x})^2 -
varythe variation of y:\sum_{i=1}^n (y_i-\bar{y})^2 -
varxythe common variation of x and y:\sum_{i=1}^n (x_i-\bar{x})(y_i-\bar{y}) -
sxythe covariance of x and y -
rxythe correlation of x and y -
b0the intercept of the linear regression -
b1the slope of the linear regression -
r2the coefficient of determination of the linear regression
Examples
# Engine displacement typically ranges from 500 to 2000 cm^3
# Fuel economy typically ranges from 2 to 8 liter/100 km
lmr <- lmr_data(c(500, 2000), c(2, 8), n=8)
str(lmr)