glioma {exactRankTests} | R Documentation |
Malignant Glioma Pilot Study
Description
A non-randomized pilot study on malignant glioma patients with pretargeted adjuvant radioimmunotherapy using Yttrium-90-biotin.
Usage
data(glioma)
Format
A data frame with 37 observations on the following 7 variables.
- No.
patient number.
- Age
patients ages in years.
- Sex
a factor with levels
F
(emale) andM
(ale).- Histology
a factor with levels
GBM
(grade IV) andGrade3
(grade III)- Survival
survival times in month.
- Cens
censoring indicator:
0
censored and1
dead.- Group
a factor with levels
Control
andRIT
.
Details
The primary endpoint of this small pilot study is survival. Survival times are tied, the usual asymptotic log-rank test may be inadequate in this setup. Therefore, a permutation test (via Monte-Carlo sampling) was conducted in the original paper. The data are taken from Tables 1 and 2 of Grana et al. (2002).
Source
C. Grana, M. Chinol, C. Robertson, C. Mazzetta, M. Bartolomei, C. De Cicco, M. Fiorenza, M. Gatti, P. Caliceti & G. Paganelli (2002), Pretargeted adjuvant radioimmunotherapy with Yttrium-90-biotin in malignant glioma patients: A pilot study. British Journal of Cancer, 86(2), 207–212.
Examples
data(glioma)
if(require(survival, quietly = TRUE)) {
par(mfrow=c(1,2))
# Grade III glioma
g3 <- glioma[glioma$Histology == "Grade3",]
# Plot Kaplan-Meier curves
plot(survfit(Surv(Survival, Cens) ~ Group, data=g3),
main="Grade III Glioma", lty=c(2,1),
legend.text=c("Control", "Treated"),
legend.bty=1, ylab="Probability",
xlab="Survival Time in Month")
# log-rank test
survdiff(Surv(Survival, Cens) ~ Group, data=g3)
# permutation test with integer valued log-rank scores
lsc <- cscores(Surv(g3$Survival, g3$Cens), int=TRUE)
perm.test(lsc ~ Group, data=g3)
# permutation test with real valued log-rank scores
lsc <- cscores(Surv(g3$Survival, g3$Cens), int=FALSE)
tr <- (g3$Group == "RIT")
T <- sum(lsc[tr])
pperm(T, lsc, sum(tr), alternative="tw")
pperm(T, lsc, sum(tr), alternative="tw", simulate=TRUE)
# Grade IV glioma
gbm <- glioma[glioma$Histology == "GBM",]
# Plot Kaplan-Meier curves
plot(survfit(Surv(Survival, Cens) ~ Group, data=gbm),
main="Grade IV Glioma", lty=c(2,1),
legend.text=c("Control", "Treated"),
legend.bty=1, legend.pos=1, ylab="Probability",
xlab="Survival Time in Month")
# log-rank test
survdiff(Surv(Survival, Cens) ~ Group, data=gbm)
# permutation test with integer valued log-rank scores
lsc <- cscores(Surv(gbm$Survival, gbm$Cens), int=TRUE)
perm.test(lsc ~ Group, data=gbm)
# permutation test with real valued log-rank scores
lsc <- cscores(Surv(gbm$Survival, gbm$Cens), int=FALSE)
tr <- (gbm$Group == "RIT")
T <- sum(lsc[tr])
pperm(T, lsc, sum(tr), alternative="tw")
pperm(T, lsc, sum(tr), alternative="tw", simulate=TRUE)
}