mop {evt0} | R Documentation |
Mean of order p statistic for the extreme value index
Description
This function compute mean of order p (MOP) basic statistic for the extreme value index (EVI), which is indeed a simple generalisation of the Hill estimator.
Usage
mop(x, k, p, method = c("MOP", "RBMOP"))
Arguments
x |
Data vector. |
k |
a vector of number of upper order statistics. |
p |
a vector of mean order. |
method |
Method used, ("MOP", default) and reduced-bias MOP ("RBMOP"). |
Details
Basic statistics for the EVI estimation, the MOP of U_{ik}
, where
U_{ik}= \frac{X_{n-i+1:n}}{X_{n-k:n}}
and X_{i:n}
are order statistics, is
A(k)= ( \frac{1}{k} \sum^k_{i=1} U^p_{ik} )^{1/p},
for p \neq 0.
The new class of MOP EVI- estimators is
H_p(k)= (1 - A^{-p}(k))/p,
for p \neq 0.
At p=0
the above MOP estimator is equal to classical Hill estimator.
Reduced bias MOP EVI-estimators is
RBA(k)=H_p(k) (1- \frac{\beta (1-p H_p(k) )}{1-\rho-p H_p(k)} (\frac{n}{k})^\rho ).
Value
a matrix of EVI estimates, corresponds to k
row and p
columns. When Method = "RBMOP"
shape and scale second order parameters estimates are also returned.
Author(s)
B G Manjunath bgmanjunath@gmail.com, Frederico Caeiro fac@fct.unl.pt
References
Brilhante, M.F., Gomes, M.I. and Pestana, D. (2013). A simple generalisation of the Hill estimator. Computational Statistics and Data Analysis, 57, 518– 535.
Beran, J., Schell, D. and Stehlik, M. (2013). The harmonic moment tail index estimator: asymptotic distribution and robustness. Ann Inst Stat Math, Published Online.
Gomes, M.I., Brilhante, M.F. and Pestana, D. (2013). New reduced-bias estimators of a positive extreme value index. Submitted article.
Examples
# generate random samples
x = rfrechet(50000, loc = 0, scale = 1,shape = 1/0.5)
# estimate EVI
mop(x,c(1,500,5000,49999), c(-1,0,1),"RBMOP")